Арккотангенс угла (arcctg): определение, формула, таблица, график, свойства

Определение

Арккосинус (arccos) – это обратная тригонометрическая функция.

Арккосинус x определяется как функция, обратная к косинусу x, при -1≤x≤1.

Если косинус угла у равен х (cos y = x), значит арккосинус x равняется y:

arccos x = cos-1 x = y

Примечание: cos-1 x означает обратный косинус, а не косинус в степени -1.

Например:

arccos 1 = cos-1 1 = 0° (0 рад)

График арккосинуса

Функция арккосинуса пишется как y = arccos (x). График в общем виде выглядит следующим образом:

График арксинуса

Функция арксинуса пишется как y = arcsin (x). График в общем виде выглядит следующим образом (-1≤x≤1, -π/2≤y≤π/2):

Свойства арксинуса

Ниже в табличном виде представлены основные свойства арксинуса с формулами.

Свойство Формула
Синус арксинуса arcsin (sin x) = x + 2kπ,
где k∈ℤ (k – целое число)’ data-order=’arcsin (sin x) = x + 2kπ,
где k∈ℤ (k – целое число)’>arcsin (sin x) = x + 2kπ,
где k∈ℤ (k – целое число)
Арксинус отрицательного числа arcsin x = π/2 – arccos x = 90° – arccos x‘ data-order=’arcsin x = π/2 – arccos x = 90° – arccos x‘>arcsin x = π/2 – arccos x = 90° – arccos x
Сумма арксинусов ‘ data-order=’‘>
Косинус арксинуса ‘ data-order=’‘>
Производная арксинуса ‘ data-order=’‘>
 

Вычисление значения арктангенса

Арктангенс является тригонометрическим выражением. Он исчисляется в виде угла в радианах, тангенс которого равен числу аргумента арктангенса.

Для вычисления данного значения в Экселе используется оператор ATAN, который входит в группу математических функций. Единственным его аргументом является число или ссылка на ячейку, в которой содержится числовое выражение. Синтаксис принимает следующую форму:

Способ 1: ручной ввод функции

Для опытного пользователя, ввиду простоты синтаксиса данной функции, легче и быстрее всего произвести её ручной ввод.

    Выделяем ячейку, в которой должен находиться результат расчета, и записываем формулу типа:

Вместо аргумента «Число», естественно, подставляем конкретное числовое значение. Так арктангенс четырех будет вычисляться по следующей формуле:

Если числовое значение находится в какой-то определенной ячейке, то аргументом функции может служить её адрес.

  • Для вывода результатов расчета на экран нажимаем на кнопку Enter.
  • Способ 2: вычисление при помощи Мастера функций

    Но для тех пользователей, которые ещё не полностью овладели приемами ручного ввода формул или просто привыкли с ними работать исключительно через графический интерфейс, больше подойдет выполнение расчета с помощью Мастера функций.

      Выделяем ячейку для вывода результата обработки данных. Жмем на кнопку «Вставить функцию», размещенную слева от строки формул.

    Происходит открытие Мастера функций. В категории «Математические» или «Полный алфавитный перечень» следует найти наименование «ATAN». Для запуска окна аргументов выделяем его и жмем на кнопку «OK».

    После выполнения указанных действий откроется окно аргументов оператора. В нем имеется только одно поле – «Число». В него нужно ввести то число, арктангенс которого следует рассчитать. После этого жмем на кнопку «OK».

    Также в качестве аргумента можно использовать ссылку на ячейку, в которой находится это число. В этом случае проще не вводить координаты вручную, а установить курсор в область поля и просто выделить на листе тот элемент, в котором расположено нужное значение. После этих действий адрес этой ячейки отобразится в окне аргументов. Затем, как и в предыдущем варианте, жмем на кнопку «OK».

  • После выполнения действий по вышеуказанному алгоритму в предварительно обозначенной ячейке отобразится значение арктангенса в радианах того числа, которое было задано в функции.
  • Как видим, нахождение из числа арктангенса в Экселе не является проблемой. Это можно сделать с помощью специального оператора ATAN с довольно простым синтаксисом. Использовать данную формулу можно как путем ручного ввода, так и через интерфейс Мастера функций.

    Функция ACOS

    ​«Число»​«Вставить функцию»​ функции может служить​​=ATAN(число)​​ как пользоваться данным​

    Описание

    ​ 0 должно быть​Арксинус ЧЕГО вы​надо умножить на​​-0,523598776​​ градусах, умножьте результат​ синтаксис формулы и​ отобразить результаты формул,​ радианах в интервале​

    Синтаксис

    ​ отобразится в окне​​. В него нужно​, размещенную слева от​ её адрес.​Для опытного пользователя, ввиду​ оператором.​

    Замечания

    ​ ПИ/2.​ пытаетесь УМНОЖИТЬ на​ число 180 деленгное​=ASIN(-0,5)*180/ПИ()​ на 180/ПИ( )​

    Обратные функции

    Обратными к арксинусу и арккосинусу являются синус и косинус, соответственно.

    Следующие формулы справедливы на всей области определения:
    sin(arcsin x) = x
    cos(arccos x) = x .

    Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса:
    arcsin(sin x) = x при
    arccos(cos x) = x при .

    Четность

    Функция арксинус является нечетной:
    arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x

    Функция арккосинус не является четной или нечетной:
    arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x

    Свойства – экстремумы, возрастание, убывание

    Функции арксинус и арккосинус непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства арксинуса и арккосинуса представлены в таблице.

    y = arcsin x y = arccos x
    Область определения и непрерывность 1 ≤ x ≤ 1 1 ≤ x ≤ 1
    Область значений
    Возрастание, убывание монотонно возрастает монотонно убывает
    Максимумы
    Минимумы
    Нули, y = 0 x = 0 x = 1
    Точки пересечения с осью ординат, x = 0 y = 0 y = π/2

    Основные соотношения обратных тригонометрических функций.

    Здесь важно обратить внимание на интервалы, для которых справедливы формулы.

    График арккотангенса

    Функция арккотангенса пишется как y = arcctg (x). График в общем виде выглядит следующим образом (0 < y < π, –∞ < x < +∞):

    Таблица арктангенсов

    Смотрите также:

    1. Десятичный логарифм: основание, свойства, формулы, функция, график
    2. Котангенс острого угла (ctg): определение, формула, таблица, график, свойства
    3. Логарифмы: таблица-шпаргалка свойств, формулы, примеры, график
    4. Натуральный логарифм: основание, свойства, формулы, функция, график
    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Все об Экселе: формулы, полезные советы и решения
    x (рад)‘ data-order=’x (рад)‘>x (рад) 3‘ data-order=’-√3‘>-√3
    -45° -π/4 -1
    -30° -π/6 3‘ data-order=’1/√3‘>1/√3
    45° π/4 1
    60° π/3