- Свойства степени с натуральным показателем.
- Степень с натуральным показателем, квадрат числа, куб числа
- Таблица степеней от 1 до 10
- Возведение числа в нулевую степень
- Первая степень числа
- Отрицательный показатель степени
- Возведение в степень
- Последовательность выполнения расчетов при работе с выражениями содержащими степень.
- Теория множеств
- Как возвести число в натуральную степень?
- Как возвести число в целую отрицательную степень?
- Теория
- Как возвести число в степень.
- Парадокс нуля
- Как пользоваться таблицей степеней числа два?
- Как пользоваться калькулятором степеней
- Возведение в степень отрицательного числа
- Степень с целым показателем
- Порядок действий в примерах со степенями
- Вывод
Свойства степени с натуральным показателем.
Чтобы умножить степени с одинаковыми основаниями мы основания не меняем, а показатели степеней складываем:
хm · хn = хm + n
например: 71.7 · 7 – 0.9 = 71.7+( – 0.9) = 71.7 – 0.9 = 70.8
Чтобы разделить степени с одинаковыми основаниями основание не меняем, а показатели степеней вычитаем:
хm / хn = хm — n , где, m > n,
например: 133.8 / 13 -0.2 = 13(3.8 -0.2) = 133.6
При расчетах возведения степени в степень основание не меняем, а показатели степеней умножаем друг на друга.
(уm )n = у m · n
например: (23)2 = 2 3·2 = 26
Если необходимо рассчитать возведение в степень произведения, то в эту степень возводится каждый множитель
(х · у)n = хn · у m ,
например:(2·3)3 = 2n · 3 m ,
При выполнении расчетов по возведению в степень дроби мы в данную степень возводим числитель и знаменатель дроби
(х / у)n = хn / уn
например: (2 / 5)3 = (2 / 5) · (2 / 5) · (2 / 5) = 23 / 53.
Степень с натуральным показателем, квадрат числа, куб числа
Для начала дадим определение степени числа с натуральным показателем. Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для действительного числа a, которое будем называть основанием степени, и натурального числа n, которое будем называть показателем степени. Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.
Определение.
Степень числа a с натуральным показателем n – это выражение вида an, значение которого равно произведению n множителей, каждый из которых равен a, то есть, .
В частности, степенью числа a с показателем 1 называется само число a, то есть, a1=a.
Из данного определения понятно, что с помощью степени с натуральным показателем можно кратко записывать произведения нескольких одинаковых множителей. Например, 8·8·8·8 можно записать как степень 84. Это аналогично тому, как с помощью произведения записывается сумма одинаковых слагаемых, к примеру, 8+8+8+8=8·4 (смотрите статью общее представление об умножении натуральных чисел).
Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи an таков: «a в степени n». В некоторых случаях также допустимы такие варианты: «a в n-ой степени» и «n-ая степень числа a». Для примера возьмем степень 812, это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».
Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа, например, 72 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа, к примеру, 53 можно прочитать как «пять в кубе» или сказать «куб числа 5».
Пришло время привести примеры степеней с натуральными показателями. Начнем со степени 57, здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: десятичная дробь 4,32 является основанием, а натуральное число 9 – показателем степени (4,32)9.
Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2)3 и −23. Выражение (−2)3 – это степень отрицательного числа −2 с натуральным показателем 3, а выражение −23 (его можно записать как −(23)) соответствует числу, противоположному значению степени 23.
Заметим, что встречается обозначение степени числа a с показателем n вида a^n. При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 49. А вот еще примеры записи степеней при помощи символа «^»: 14^(21), (−2,1)^(155). В дальнейшем мы преимущественно будем пользоваться обозначением степени вида an.
Данное выше определение позволяет находить значение степени с натуральным показателем. Для этого нужно вычислить произведение n одинаковых множителей, равных a. Эта тема заслуживает детального рассмотрения в отдельной статье – смотрите возведение в степень с натуральным показателем.
Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к понятию корня из числа.
Также стоит изучить свойства степени с натуральным показателем, которые вытекают из данного определения степени и свойств умножения.
Таблица степеней от 1 до 10
1 1 = 1 1 2 = 1 1 3 = 1 1 4 = 1 1 5 = 1 1 6 = 1 1 7 = 1 1 8 = 1 1 9 = 1 1 10 = 1 |
2 1 = 2 2 2 = 4 2 3 = 8 2 4 = 16 2 5 = 32 2 6 = 64 2 7 = 128 2 8 = 256 2 9 = 512 2 10 = 1024 |
3 1 = 3 3 2 = 9 3 3 = 27 3 4 = 81 3 5 = 243 3 6 = 729 3 7 = 2187 3 8 = 6561 3 9 = 19683 3 10 = 59049 |
4 1 = 4 4 2 = 16 4 3 = 64 4 4 = 256 4 5 = 1024 4 6 = 4096 4 7 = 16384 4 8 = 65536 4 9 = 262144 4 10 = 1048576 |
5 1 = 5 5 2 = 25 5 3 = 125 5 4 = 625 5 5 = 3125 5 6 = 15625 5 7 = 78125 5 8 = 390625 5 9 = 1953125 5 10 = 9765625 |
6 1 = 6 6 2 = 36 6 3 = 216 6 4 = 1296 6 5 = 7776 6 6 = 46656 6 7 = 279936 6 8 = 1679616 6 9 = 10077696 6 10 = 60466176 |
7 1 = 7 7 2 = 49 7 3 = 343 7 4 = 2401 7 5 = 16807 7 6 = 117649 7 7 = 823543 7 8 = 5764801 7 9 = 40353607 7 10 = 282475249 |
8 1 = 8 8 2 = 64 8 3 = 512 8 4 = 4096 8 5 = 32768 8 6 = 262144 8 7 = 2097152 8 8 = 16777216 8 9 = 134217728 8 10 = 1073741824 |
9 1 = 9 9 2 = 81 9 3 = 729 9 4 = 6561 9 5 = 59049 9 6 = 531441 9 7 = 4782969 9 8 = 43046721 9 9 = 387420489 9 10 = 3486784401 |
10 1 = 10 10 2 = 100 10 3 = 1000 10 4 = 10000 10 5 = 100000 10 6 = 1000000 10 7 = 10000000 10 8 = 100000000 10 9 = 1000000000 10 10 = 10000000000 |
Возведение числа в нулевую степень
Известно, что при x0 любое x равно 1 (x0 = 1). Чтобы доказать это, нужно выяснить, откуда собственно взялся этот ноль? Для этого вспомним формулы сложения и вычитания степеней. Итак: 73 = 72+1 = 72 × 71 = 7 × 7 × 7, ⇒ 73 = 79-6 = 79 ÷ 76, ⇒ 70 = 73-3 = 73 ÷ 73 = 1 Доказательство получено. Однако есть исключение из этого правила.
Первая степень числа
Любое число в первой степени равно самому себе, так как показатель степени 1 указывает что число берётся сомножителем всего один раз, то есть оно ни на что не умножается,а просто остаётся без изменений.
Примеры:
71 = 7, 1001 = 100, -251 = -25
Отрицательный показатель степени
Показатели степени могут быть не только положительными, но и отрицательными.
Например,
а
Возведение в степень
Возведение числа в степень – это вычисление произведения одинаковых множителей. Например, возвести число 2 в третью степень (23) – это значит найти произведение 2 · 2 · 2 , то есть
23 = 2 · 2 · 2 = 8.
Результат возведения в степень называется степенью (также как и само выражение, значение которого вычисляется). В выражении:
23 = 8,
2 – это основание степени, 3 – показатель степени, 8 – степень.
Пример. Вычислите:
a) 112
б) 25
в) 104.
Решение:
a) 112 = 11 · 11 = 121;
б) 25 = 2 · 2 · 2 · 2 · 2 = 32;
в) 104 = 10 · 10 · 10 · 10 = 10000.
Последовательность выполнения расчетов при работе с выражениями содержащими степень.
При выполнении расчетов выражений без скобок, но содержащих степени, в первую очередь производят возведение в степень, потом действия умножение и деление, и лишь потом операции сложения и вычитания.
Если необходимо вычислить выражение содержащие скобки, то сначала в указанном выше порядке делаем вычисления в скобках, а потом оставшиеся действия в том же порядке слева направо.
Очень широко в практических вычислениях для упрощения расчетов используют готовые таблицы степеней.
Теория множеств
Вроде на этом можно остановиться, но есть еще одно элегантное доказательство. Дело в том, что математика, это не только цифры и числовые оси. Есть комбинаторика, теория функций, множество других разделов, где нужно значение 0 в степени 0.
Итак, есть три блогера смежной тематики: Я, Артур Шарифов и Топа. И есть две обалденные темы для ролика, например, искусственный интеллект и космос! Каждый записывает 1 ролик на 1 тему, повторяться, конечно, можно. Вопрос: сколькими вариантами они могут это сделать? Ну то есть все на одну тему, или двое одну, третий другую?
К чему эта задача? В теории множеств есть теорема, согласно которой множество с количеством элементов M можно отобразить на множество с количеством элементов N вот столькими вариантами N в степени M.
Здесь как раз множество блогеров (3 элемента) отображается на множество тем (2 элемента). В итоге получается 8 вариантов.
Если что, вот они все перед вами:
Дело в том, что бывают и пустые множества! И есть только один вариант отображения пустого множества на пустое. А это значит, что 0 в степени 0 и есть единица! Это чисто символическое доказательство, не такое серьезное. Но все равно, логично что, ноль блогеров может записать ноль роликов только одним способом.
Как возвести число в натуральную степень?
Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:
Пример 1. Возвести число три в четвёртую степень. То есть необходимо вычислить 34
Решение: как было сказано выше, 34
= 3·3·3·3
= 81
.
Ответ: 34 = 81
.
Пример 2. Возвести число пять в пятую степень. То есть необходимо вычислить 55
Решение: аналогично, 55
= 5·5·5·5·5
= 3125
.
Ответ: 55 = 3125
.
Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n
раз.
Как возвести число в целую отрицательную степень?
Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.
Пример 1. Возвести число два в минус четвёртую степень. То есть необходимо вычислить 2-4
Решение: как было сказано выше, 2-4 =
=
= 0.0625.
Ответ: 2-4 = 0.0625
.
Теория
Степень числа – это сокращенная запись операции многократного умножения числа самого на себя. Само число в данном случае называется – основанием степени, а количество операций умножения – показателем степени.
an = a×a … ×a
запись читается: «a» в степени «n».
«a» – основание степени
«n» – показатель степени
Пример:
46 = 4 × 4 × 4 × 4 × 4 × 4 = 4096
Данное выражение читается: 4 в степени 6 или шестая степень числа четыре или возвести число четыре в шестую степень.
Как возвести число в степень.
Давайте рассмотрим процесс возведения в степень на примере. Пусть нам необходимо возвести число 5 в 3-ю степень. На языке математики 5 — это основание, а 3 — показатель (или просто степень). И записать это можно кратко в таком виде:

Возведение в степень
А чтобы найти значение, нам будет необходимо число 5 умножить на себя 3 раза, т. е.
53 = 5 x 5 x 5 = 125
Соответственно, если мы хотим найти значение числа 7 в 5 степени, мы должны число 7 умножить на себя 5 раз, т. е. 7 x 7 x 7 x 7 x 7. Другое дело когда требуется возвести число в отрицательную степень.
Парадокс нуля
Здесь все гораздо сложнее, но не настолько, чтобы не разобраться. Известно, что 0x = 0. Например: 04 = 0 × 0 × 0 × 0 = 0 Почему же мы часто встречаем выражение 00 = 1? На самом деле это не совсем верно. Возьмем функцию y = ƒ (x) = xx. Подберем значения по табл.1.
Таблица 1. Функция ƒ(x) = xx
x | xx |
1 | 1 |
0,9 | 0,909 |
0,8 | 0,836 |
0,7 | 0,779 |
0,6 | 0,736 |
0,5 | 0,707 |
0,4 | 0,693 |
0,3 | 0,697 |
0,2 | 0,725 |
0,1 | 0,794 |
0,01 | 0,955 |
0,001 | 0,993 |
Как видим, с определенного момента значение xx растет вместе с уменьшением x. В этом нет ничего сверхъестественного, это всего лишь пример действия формулы

Изобразим это на графике


Проверим, вычислив это значение. Преобразуем основание выражения. Получаем:
xx = (eln x)x = ex ln x
В этом случае x → 0, а ln x → -∞ Получаем следующее выражение:

Пользуемся правилом Лопиталя:

Получаем:

Доказательство получено. Официальная позиция современной математики гласит, что выражение 00– представляет собой неопределенность, то есть не имеет точного значения. Однако на практике, при расчетах, его значение подстраивается под конкретные требования. И чаще всего в этих случаях оно равно единице. Чтобы лучше разобраться с темой нулевой степени, советуем посмотреть видео ниже.
Как пользоваться таблицей степеней числа два?
Степень двойки (n) | Значение степени двойки 2n |
Максимальное число без знака,
записанное с помощью n бит
|
Максимальное число со знаком,
записанное с помощью n бит |
0 | 1 | – | – |
1 | 2 | 1 | – |
2 | 4 | 3 | 1 |
3 | 8 | 7 | 3 |
4 | 16 | 15 | 7 |
5 | 32 | 31 | 15 |
6 | 64 | 63 | 31 |
7 | 128 | 127 | 63 |
8 | 256 | 255 | 127 |
9 | 512 | 511 | 255 |
10 | 1 024 | 1 023 | 511 |
11 | 2 048 | 2 047 | 1023 |
12 | 40 96 | 4 095 | 2047 |
13 | 8 192 | 8 191 | 4095 |
14 | 16 384 | 16 383 | 8191 |
15 | 32 768 | 32 767 | 16383 |
16 | 65 536 | 65 535 | 32767 |
17 | 131 072 | 131 071 | 65 535 |
18 | 262 144 | 262 143 | 131 071 |
19 | 524 288 | 524 287 | 262 143 |
20 | 1 048 576 | 1 048 575 | 524 287 |
21 | 2 097 152 | 2 097 151 | 1 048 575 |
22 | 4 194 304 | 4 194 303 | 2 097 151 |
23 | 8 388 608 | 8 388 607 | 4 194 303 |
24 | 16 777 216 | 16 777 215 | 8 388 607 |
25 | 33 554 432 | 33 554 431 | 16 777 215 |
26 | 67 108 864 | 67 108 863 | 33 554 431 |
27 | 134 217 728 | 134 217 727 | 67 108 863 |
28 | 268 435 456 | 268 435 455 | 134 217 727 |
29 | 536 870 912 | 536 870 911 | 268 435 455 |
30 | 1 073 741 824 | 1 073 741 823 | 536 870 911 |
31 | 2 147 483 648 | 2 147 483 647 | 1 073 741 823 |
32 | 4 294 967 296 | 4 294 967 295 | 2 147 483 647 |
Как пользоваться калькулятором степеней
Калькулятор помогает возводить число в степень онлайн. Основанием степени могут быть любые целые числа и десятичные дроби. Показатель степени тоже может быть любой десятичной дробью, однако следует помнить о том, что для отрицательных чисел не определена операция возведения в нецелую степень.
При записи дробных чисел можно использовать как точку, так и запятую. В ответе большие числа записываются в так называемом «научном формате», то есть число выглядит как <число>e<количество нулей>. Например, , а
, а
Возведение в степень отрицательного числа
Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.

При возведении в степень положительного числа получается положительное число.
При возведении нуля в натуральную степень получается ноль.
При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.
Рассмотрим примеры возведения в степень отрицательных чисел.
Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.
Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.

Отрицательное число, возведённое в чётную степень, есть число положительное.
Отрицательное число, возведённое в нечётную степень, — число отрицательное.
Квадрат любого числа есть положительное число или нуль, то есть:
a2 ≥ 0 при любом a.
- 2 · (−3)2 = 2 · (−3) · (−3) = 2 · 9 = 18
- −5 · (−2)3 = −5 · (−8) = 40
Степень с целым показателем
После того как мы определили степень числа a с натуральным показателем, возникает логичное стремление расширить понятие степени и перейти к степени числа, показателем которой будет любое целое число, в том числе и отрицательное и нуль. Это следует делать так, чтобы оставались справедливыми все свойства степени с натуральным показателем, так как натуральные числа являются частью целых чисел.
Степень числа a с целым положительным показателем есть не что иное как степень числа a с натуральным показателем: , где n – целое положительное число.
Теперь определим нулевую степень числа a. Будем исходить из свойства частного степеней с одинаковыми основаниями: для натуральных чисел m и n, m<n и отличного от нуля действительного числа a выполняется равенство am:an=am−n (условие a≠0 необходимо, так как в противном случае мы бы имели деление на нуль). При m=n записанное равенство нас приводит к следующему результату an:an=an−n=a0. Но с другой стороны an:an=1 как частное равных чисел an и an. Следовательно, приходится принять a0=1 для любого отличного от нуля действительного числа a.
А как же быть с нулем в нулевой степени? Подход, примененный в предыдущем абзаце, не подходит для этого случая. Можно вспомнить про свойство произведения степеней с одинаковыми основаниями am·an=am+n, в частности при n=0 имеем am·a0=am (из этого равенства тоже видно, что a0=1). Однако, при a=0 мы получим равенство 0m·00=0m, которое можно переписать как 0=0, оно верно при любом натуральном m вне зависимости от того, чему равно значение выражения 00. Иными словами, 00 может быть равно любому числу. Чтобы избежать этой многозначности, не будем приписывать нулю в степени нуль никакого смысла (по этим же соображениям при изучении деления мы не стали придавать смысл выражению 0:0).
Несложно проверить, что принятое нами равенство a0=1 для отличных от нуля чисел a согласуется со свойством степени в степени (am)n=am·n. Действительно, при n=0 имеем (am)0=1 и am·0=a0=1, а при m=0 имеем (a0)n=1n=1 и a0·n=a0=1.
Так мы пришли к определению степени с нулевым показателем. Степень числа a с нулевым показателем (a отличное от нуля действительное число) равна единице, то есть, a0=1 при a≠0.
Приведем примеры: 50=1, (33,3)0=1, , а 00 – не определено.
Нулевую степень числа a определили, осталось определить целую отрицательную степень числа a. В этом нам поможет все то же свойство произведения степеней с одинаковыми основаниями am·an=am+n. Примем m=−n, что требует условия a≠0, тогда a−n·an=a−n+n=a0=1, откуда заключаем, что an и a−n – взаимно обратные числа. Таким образом, логично определить число a в целой отрицательной степени −n как дробь . Несложно проверить, что при таком задании степени отличного от нуля числа a с целым отрицательным показателем остаются справедливыми все свойства степени с натуральным показателем (смотрите свойства степени с целым показателем), к чему мы и стремились.
Озвучим определение степени с целым отрицательным показателем. Степень числа a с целым отрицательным показателем −n (a отличное от нуля действительное число) – это есть дробь , то есть,
при a≠0 и натуральном n.
Рассмотрим данное определение степени с целым отрицательным показателем на конкретных примерах: .
Подытожим информацию этого пункта.
Определение.
Степень числа a с целым показателем z определяется так:
Порядок действий в примерах со степенями
Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

В выражениях со степенями, не содержащими скобки, сначала выполняют вовзведение в степень, затем умножение и деление, а в конце сложение и вычитание.
Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.
Пример. Вычислить:
Вывод
Если мы находимся в рамках алгебры, простых арифметических вычислений, теории множеств, комбинаторики, находим суммы рядов, то без проблем можем считать это равным единице, и это во многих случаях будет даже упрощать наши вычисления.
Но в общем случае, особенно в рамках математического анализа, при вычислении пределов, говорят, что значение 0 в степени 0 – не определено. Его не существует, вот и все. И вообще, это только одна из многих неопределенностей, возникающих в матане, которая разрешается по-своему в каждом конкретном случае.
Так что чему равняется 0 в степени 0 зависит от контекста. Во многих случаях можно считать это единицей, но нужно помнить, что не во всех! И в разных языках программирования, разных калькуляторах тоже может быть по-разному. Где-то один, где-то не определено. В любом случае, практического применения у этого выражения нет, поэтому математики особо от него не страдают, хоть и иногда спорят, считать 0 в степени 0 равным единице, или нет. Но это не мешает быть ему таким интересным.
- https://www.calc.ru/Stepen-Chisla.html
- http://www.cleverstudents.ru/powers/powers.html
- https://calcsbox.com/post/tablica-stepenej.html
- https://nauka.club/matematika/chislo-v-nulevoj-stepeni.html
- https://naobumium.info/algebra/stepen1.php
- https://umath.ru/calc/vozvedenie-chisla-v-stepen-onlajn/
- https://izamorfix.ru/matematika/arifmetika/stepen_chisla.html
- https://zen.yandex.ru/media/id/5c1780145bee8800a916afc6/pochemu-0-v-stepeni-0-ravno-1-5dcbd8f61322b67386d1996f
- https://programforyou.ru/calculators/calculator-stepenej
- https://doza.pro/art/math/algebra/table-degrees
- https://calculat.ru/kalkulyator-stepenej
- https://profmeter.com.ua/communication/learning/course/course19/lesson747/
- http://math-prosto.ru/?page=pages%2Fstepeni%2Fstepeni1.php