Число в первой и нулевой степени, как состовлять

Свойства степени с натуральным показателем.

Чтобы умножить степени с одинаковыми основаниями мы основания не меняем, а показатели степеней складываем:

хm · хn = хm + n

например: 71.7 · 7 – 0.9 = 71.7+( – 0.9) = 71.7 – 0.9 = 70.8

Чтобы разделить степени с одинаковыми основаниями основание не меняем, а показатели степеней вычитаем:

хm / хn = хm — n , где, m > n,

например: 133.8 / 13 -0.2 = 13(3.8 -0.2) = 133.6

При расчетах возведения степени в степень основание не меняем, а показатели степеней умножаем друг на друга.

m )n = у m · n

например: (23)2 = 2 3·2 = 26

Если необходимо рассчитать возведение в степень произведения, то в эту степень возводится каждый множитель

(х · у)n = хn · у m ,

например:(2·3)3 = 2n · 3 m ,

При выполнении расчетов по возведению в степень дроби мы в данную степень возводим числитель и знаменатель дроби

(х / у)n = хn / уn

например: (2 / 5)3 = (2 / 5) · (2 / 5) · (2 / 5) = 23 / 53.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим определение степени числа с натуральным показателем. Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для действительного числа a, которое будем называть основанием степени, и натурального числа n, которое будем называть показателем степени. Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n – это выражение вида an, значение которого равно произведению n множителей, каждый из которых равен a, то есть, .
В частности, степенью числа a с показателем 1 называется само число a, то есть, a1=a.

Из данного определения понятно, что с помощью степени с натуральным показателем можно кратко записывать произведения нескольких одинаковых множителей. Например, 8·8·8·8 можно записать как степень 84. Это аналогично тому, как с помощью произведения записывается сумма одинаковых слагаемых, к примеру, 8+8+8+8=8·4 (смотрите статью общее представление об умножении натуральных чисел).

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи an таков: «a в степени n». В некоторых случаях также допустимы такие варианты: «a в n-ой степени» и «n-ая степень числа a». Для примера возьмем степень 812, это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа, например, 72 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа, к примеру, 53 можно прочитать как «пять в кубе» или сказать «куб числа 5».

Пришло время привести примеры степеней с натуральными показателями. Начнем со степени 57, здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: десятичная дробь 4,32 является основанием, а натуральное число 9 – показателем степени (4,32)9.

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2)3 и −23. Выражение (−2)3 – это степень отрицательного числа −2 с натуральным показателем 3, а выражение −23 (его можно записать как −(23)) соответствует числу, противоположному значению степени 23.

Заметим, что встречается обозначение степени числа a с показателем n вида a^n. При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 49. А вот еще примеры записи степеней при помощи символа «^»: 14^(21), (−2,1)^(155). В дальнейшем мы преимущественно будем пользоваться обозначением степени вида an.

Данное выше определение позволяет находить значение степени с натуральным показателем. Для этого нужно вычислить произведение n одинаковых множителей, равных a. Эта тема заслуживает детального рассмотрения в отдельной статье – смотрите возведение в степень с натуральным показателем.

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к понятию корня из числа.

Также стоит изучить свойства степени с натуральным показателем, которые вытекают из данного определения степени и свойств умножения.

Таблица степеней от 1 до 10

1 1 = 1

1 2 = 1

1 3 = 1

1 4 = 1

1 5 = 1

1 6 = 1

1 7 = 1

1 8 = 1

1 9 = 1

1 10 = 1

2 1 = 2

2 2 = 4

2 3 = 8

2 4 = 16

2 5 = 32

2 6 = 64

2 7 = 128

2 8 = 256

2 9 = 512

2 10 = 1024

3 1 = 3

3 2 = 9

3 3 = 27

3 4 = 81

3 5 = 243

3 6 = 729

3 7 = 2187

3 8 = 6561

3 9 = 19683

3 10 = 59049

4 1 = 4

4 2 = 16

4 3 = 64

4 4 = 256

4 5 = 1024

4 6 = 4096

4 7 = 16384

4 8 = 65536

4 9 = 262144

4 10 = 1048576

5 1 = 5

5 2 = 25

5 3 = 125

5 4 = 625

5 5 = 3125

5 6 = 15625

5 7 = 78125

5 8 = 390625

5 9 = 1953125

5 10 = 9765625

6 1 = 6

6 2 = 36

6 3 = 216

6 4 = 1296

6 5 = 7776

6 6 = 46656

6 7 = 279936

6 8 = 1679616

6 9 = 10077696

6 10 = 60466176

7 1 = 7

7 2 = 49

7 3 = 343

7 4 = 2401

7 5 = 16807

7 6 = 117649

7 7 = 823543

7 8 = 5764801

7 9 = 40353607

7 10 = 282475249

8 1 = 8

8 2 = 64

8 3 = 512

8 4 = 4096

8 5 = 32768

8 6 = 262144

8 7 = 2097152

8 8 = 16777216

8 9 = 134217728

8 10 = 1073741824

9 1 = 9

9 2 = 81

9 3 = 729

9 4 = 6561

9 5 = 59049

9 6 = 531441

9 7 = 4782969

9 8 = 43046721

9 9 = 387420489

9 10 = 3486784401

10 1 = 10

10 2 = 100

10 3 = 1000

10 4 = 10000

10 5 = 100000

10 6 = 1000000

10 7 = 10000000

10 8 = 100000000

10 9 = 1000000000

10 10 = 10000000000

Возведение числа в нулевую степень

Известно, что при x0 любое x равно 1 (x0 = 1). Чтобы доказать это, нужно выяснить, откуда собственно взялся этот ноль? Для этого вспомним формулы сложения и вычитания степеней. Итак: 73 = 72+1 = 72 × 71 = 7 × 7 × 7, ⇒ 73 = 79-6 = 79 ÷ 76, ⇒ 70 = 73-3 = 73 ÷ 73 = 1 Доказательство получено. Однако есть исключение из этого правила.

Первая степень числа

Любое число в первой степени равно самому себе, так как показатель степени 1 указывает что число берётся сомножителем всего один раз, то есть оно ни на что не умножается,а просто остаётся без изменений.

Примеры:

71 = 7, 1001 = 100, -251 = -25

Отрицательный показатель степени

Показатели степени могут быть не только положительными, но и отрицательными.

Например,

а

Возведение в степень

Возведение числа в степень – это вычисление произведения одинаковых множителей. Например, возвести число 2 в третью степень (23) – это значит найти произведение 2 · 2 · 2 , то есть

23 = 2 · 2 · 2 = 8.

Результат возведения в степень называется степенью (также как и само выражение, значение которого вычисляется). В выражении:

23 = 8,

2 – это основание степени, 3 – показатель степени, 8 – степень.

Пример. Вычислите:

a) 112

б) 25

в) 104.

Решение:

a) 112 = 11 · 11 = 121;

б) 25 = 2 · 2 · 2 · 2 · 2 = 32;

в) 104 = 10 · 10 · 10 · 10 = 10000.

Последовательность выполнения расчетов при работе с выражениями содержащими степень.

При выполнении расчетов выражений без скобок, но содержащих степени, в первую очередь производят возведение в степень, потом действия умножение и деление, и лишь потом операции сложения и вычитания.

Если необходимо вычислить выражение содержащие скобки, то сначала в указанном выше порядке делаем вычисления в скобках, а потом оставшиеся действия в том же порядке слева направо.

Очень широко в практических вычислениях для упрощения расчетов используют готовые таблицы степеней.

Теория множеств

Вроде на этом можно остановиться, но есть еще одно элегантное доказательство. Дело в том, что математика, это не только цифры и числовые оси. Есть комбинаторика, теория функций, множество других разделов, где нужно значение 0 в степени 0.

Итак, есть три блогера смежной тематики: Я, Артур Шарифов и Топа. И есть две обалденные темы для ролика, например, искусственный интеллект и космос! Каждый записывает 1 ролик на 1 тему, повторяться, конечно, можно. Вопрос: сколькими вариантами они могут это сделать? Ну то есть все на одну тему, или двое одну, третий другую?

К чему эта задача? В теории множеств есть теорема, согласно которой множество с количеством элементов M можно отобразить на множество с количеством элементов N вот столькими вариантами N в степени M.

Здесь как раз множество блогеров (3 элемента) отображается на множество тем (2 элемента). В итоге получается 8 вариантов.

Если что, вот они все перед вами:

Дело в том, что бывают и пустые множества! И есть только один вариант отображения пустого множества на пустое. А это значит, что 0 в степени 0 и есть единица! Это чисто символическое доказательство, не такое серьезное. Но все равно, логично что, ноль блогеров может записать ноль роликов только одним способом.

Как возвести число в натуральную степень?

Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:

Пример 1. Возвести число три в четвёртую степень. То есть необходимо вычислить 34
Решение: как было сказано выше, 34 = 3·3·3·3 = 81.
Ответ: 34 = 81.

Пример 2. Возвести число пять в пятую степень. То есть необходимо вычислить 55
Решение: аналогично, 55 = 5·5·5·5·5 = 3125.
Ответ: 55 = 3125.

Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n раз.

Как возвести число в целую отрицательную степень?

Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.

Пример 1. Возвести число два в минус четвёртую степень. То есть необходимо вычислить 2-4

Решение: как было сказано выше, 2-4 =

1
24

=

1
2·2·2·2

= 0.0625.

Ответ: 2-4 = 0.0625.

Теория

Степень числа – это сокращенная запись операции многократного умножения числа самого на себя. Само число в данном случае называется – основанием степени, а количество операций умножения – показателем степени.

an = a×a … ×a

запись читается: «a» в степени «n».

«a» – основание степени

«n» – показатель степени

Пример:

46 = 4 × 4 × 4 × 4 × 4 × 4 = 4096

Данное выражение читается: 4 в степени 6 или шестая степень числа четыре или возвести число четыре в шестую степень.

Как возвести число в степень.

Давайте рассмотрим процесс возведения в степень на примере. Пусть нам необходимо возвести число 5 в 3-ю степень. На языке математики 5 — это основание, а 3 — показатель (или просто степень). И записать это можно кратко в таком виде:

Возведение в степень

А чтобы найти значение, нам будет необходимо число 5 умножить на себя 3 раза, т. е.

53 = 5 x 5 x 5 = 125

Соответственно, если мы хотим найти значение числа 7 в 5 степени, мы должны число 7 умножить на себя 5 раз, т. е. 7 x 7 x 7 x 7 x 7. Другое дело когда требуется возвести число в отрицательную степень.

Парадокс нуля

Здесь все гораздо сложнее, но не настолько, чтобы не разобраться. Известно, что 0x = 0. Например: 04 = 0 × 0 × 0 × 0 = 0 Почему же мы часто встречаем выражение 00 = 1? На самом деле это не совсем верно. Возьмем функцию y = ƒ (x) = xx. Подберем значения по табл.1.

Таблица 1. Функция ƒ(x) = xx

x xx
1 1
0,9 0,909
0,8 0,836
0,7 0,779
0,6 0,736
0,5 0,707
0,4 0,693
0,3 0,697
0,2 0,725
0,1 0,794
0,01 0,955
0,001 0,993

Как видим, с определенного момента значение xx растет вместе с уменьшением x. В этом нет ничего сверхъестественного, это всего лишь пример действия формулы

Изобразим это на графике

Рис.1 График y = ƒ(x) = xx
Таким образом, делаем предположение, что это выражение является пределом. Выразить это можно так:

Проверим, вычислив это значение. Преобразуем основание выражения. Получаем:

xx = (eln x)x = ex ln x

В этом случае x → 0, а ln x → -∞ Получаем следующее выражение:

Пользуемся правилом Лопиталя:

Получаем:

Доказательство получено. Официальная позиция современной математики гласит, что выражение 00– представляет собой неопределенность, то есть не имеет точного значения. Однако на практике, при расчетах, его значение подстраивается под конкретные требования. И чаще всего в этих случаях оно равно единице. Чтобы лучше разобраться с темой нулевой степени, советуем посмотреть видео ниже.

Как пользоваться таблицей степеней числа два?

Первый столбец – это степень двойки, который одновременно, обозначает число бит, которое представляет число.
Второй столбец – значение двойки в соответствующей степени (n).

Пример нахождения степени числа 2. Находим в первом столбце число 7. Смотрим по строке вправо и находим значение два в седьмой степени (27) – это 128
Третий столбец – максимальное число, которое можно представить с помощью заданного числа бит (в первом столбце).
Пример определения максимального целого числа без знака. Если использовать данные из предыдущего примера, мы знаем, что 27 = 128. Это верно, если мы хотим понять, какое количество чисел, можно представить с помощью семи бит. Но, поскольку первое число – это ноль, то максимальное число, которое можно представить с помощью семи бит 128 – 1 = 127 . Это и есть значение третьего столбца.
Степень двойки (n) Значение степени двойки
2n
Максимальное число без знака,
записанное с помощью n бит

Максимальное число со знаком,

записанное с помощью n бит

0 1
1 2 1
2 4 3 1
3 8 7 3
4 16 15 7
5 32 31 15
6 64 63 31
7 128 127 63
8 256 255 127
9 512 511 255
10 1 024 1 023 511
11 2 048 2 047 1023
12 40 96 4 095 2047
13 8 192 8 191 4095
14 16 384 16 383 8191
15 32 768 32 767 16383
16 65 536 65 535 32767
17 131 072 131 071 65 535
18 262 144 262 143 131 071
19 524 288 524 287 262 143
20 1 048 576 1 048 575 524 287
21 2 097 152 2 097 151 1 048 575
22 4 194 304 4 194 303 2 097 151
23 8 388 608 8 388 607 4 194 303
24 16 777 216 16 777 215 8 388 607
25 33 554 432 33 554 431 16 777 215
26 67 108 864 67 108 863 33 554 431
27 134 217 728 134 217 727 67 108 863
28 268 435 456 268 435 455 134 217 727
29 536 870 912 536 870 911 268 435 455
30 1 073 741 824 1 073 741 823 536 870 911
31 2 147 483 648 2 147 483 647 1 073 741 823
32 4 294 967 296 4 294 967 295 2 147 483 647
Необходимо принять во внимание, что не все числа в компьютере представлены таким образом. Существуют и другие способы представления данных. Например, если мы хотим записывать не только положительные, но и отрицательные числа, то нам потребуется еще один бит для хранения значения “плюс/минус”. Таким образом, количество бит, предназначенных для хранения чисел у нас уменьшилось на один. Какое максимальное число может быть записано в виде целого числа со знаком можно посмотреть в четвертом столбце.
Для этого же самого примера ( 27 ) семью битами можно записать максимум число +63, поскольку один бит занят знаком “плюс”. Но мы можем хранить и число “-63“, что было бы невозможно, если бы все биты были бы зарезервированы под хранение числа.

Как пользоваться калькулятором степеней

Калькулятор помогает возводить число в степень онлайн. Основанием степени могут быть любые целые числа и десятичные дроби. Показатель степени тоже может быть любой десятичной дробью, однако следует помнить о том, что для отрицательных чисел не определена операция возведения в нецелую степень.

При записи дробных чисел можно использовать как точку, так и запятую. В ответе большие числа записываются в так называемом «научном формате», то есть число выглядит как <число>e<количество нулей>. Например, , а , а

Возведение в степень отрицательного числа

Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.

Запомните!

При возведении в степень положительного числа получается положительное число.

При возведении нуля в натуральную степень получается ноль.

При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.

Рассмотрим примеры возведения в степень отрицательных чисел.

Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.

Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.

Запомните!

Отрицательное число, возведённое в чётную степень, есть число положительное.

Отрицательное число, возведённое в нечётную степень, — число отрицательное.

Квадрат любого числа есть положительное число или нуль, то есть:
a2 ≥ 0 при любом a.

  • 2 · (−3)2 = 2 · (−3) · (−3) = 2 · 9 = 18
  • −5 · (−2)3 = −5 · (−8) = 40

Степень с целым показателем


После того как мы определили степень числа a с натуральным показателем, возникает логичное стремление расширить понятие степени и перейти к степени числа, показателем которой будет любое целое число, в том числе и отрицательное и нуль. Это следует делать так, чтобы оставались справедливыми все свойства степени с натуральным показателем, так как натуральные числа являются частью целых чисел.

Степень числа a с целым положительным показателем есть не что иное как степень числа a с натуральным показателем: , где n – целое положительное число.

Теперь определим нулевую степень числа a. Будем исходить из свойства частного степеней с одинаковыми основаниями: для натуральных чисел m и n, m<n и отличного от нуля действительного числа a выполняется равенство am:an=am−n (условие a≠0 необходимо, так как в противном случае мы бы имели деление на нуль). При m=n записанное равенство нас приводит к следующему результату an:an=an−n=a0. Но с другой стороны an:an=1 как частное равных чисел an и an. Следовательно, приходится принять a0=1 для любого отличного от нуля действительного числа a.

А как же быть с нулем в нулевой степени? Подход, примененный в предыдущем абзаце, не подходит для этого случая. Можно вспомнить про свойство произведения степеней с одинаковыми основаниями am·an=am+n, в частности при n=0 имеем am·a0=am (из этого равенства тоже видно, что a0=1). Однако, при a=0 мы получим равенство 0m·00=0m, которое можно переписать как 0=0, оно верно при любом натуральном m вне зависимости от того, чему равно значение выражения 00. Иными словами, 00 может быть равно любому числу. Чтобы избежать этой многозначности, не будем приписывать нулю в степени нуль никакого смысла (по этим же соображениям при изучении деления мы не стали придавать смысл выражению 0:0).

Несложно проверить, что принятое нами равенство a0=1 для отличных от нуля чисел a согласуется со свойством степени в степени (am)n=am·n. Действительно, при n=0 имеем (am)0=1 и am·0=a0=1, а при m=0 имеем (a0)n=1n=1 и a0·n=a0=1.

Так мы пришли к определению степени с нулевым показателем. Степень числа a с нулевым показателем (a отличное от нуля действительное число) равна единице, то есть, a0=1 при a≠0.

Приведем примеры: 50=1, (33,3)0=1, , а 00 – не определено.

Нулевую степень числа a определили, осталось определить целую отрицательную степень числа a. В этом нам поможет все то же свойство произведения степеней с одинаковыми основаниями am·an=am+n. Примем m=−n, что требует условия a≠0, тогда a−n·an=a−n+n=a0=1, откуда заключаем, что an и a−nвзаимно обратные числа. Таким образом, логично определить число a в целой отрицательной степени −n как дробь . Несложно проверить, что при таком задании степени отличного от нуля числа a с целым отрицательным показателем остаются справедливыми все свойства степени с натуральным показателем (смотрите свойства степени с целым показателем), к чему мы и стремились.

Озвучим определение степени с целым отрицательным показателем. Степень числа a с целым отрицательным показателем −n (a отличное от нуля действительное число) – это есть дробь , то есть, при a≠0 и натуральном n.

Рассмотрим данное определение степени с целым отрицательным показателем на конкретных примерах: .

Подытожим информацию этого пункта.

Определение.

Степень числа a с целым показателем z определяется так:
 

Порядок действий в примерах со степенями

Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

Запомните!

В выражениях со степенями, не содержащими скобки, сначала выполняют вовзведение в степень, затем умножение и деление, а в конце сложение и вычитание.

Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.

Пример. Вычислить:

Вывод

Если мы находимся в рамках алгебры, простых арифметических вычислений, теории множеств, комбинаторики, находим суммы рядов, то без проблем можем считать это равным единице, и это во многих случаях будет даже упрощать наши вычисления.

Но в общем случае, особенно в рамках математического анализа, при вычислении пределов, говорят, что значение 0 в степени 0 – не определено. Его не существует, вот и все. И вообще, это только одна из многих неопределенностей, возникающих в матане, которая разрешается по-своему в каждом конкретном случае.

Так что чему равняется 0 в степени 0 зависит от контекста. Во многих случаях можно считать это единицей, но нужно помнить, что не во всех! И в разных языках программирования, разных калькуляторах тоже может быть по-разному. Где-то один, где-то не определено. В любом случае, практического применения у этого выражения нет, поэтому математики особо от него не страдают, хоть и иногда спорят, считать 0 в степени 0 равным единице, или нет. Но это не мешает быть ему таким интересным.

Источники


  • https://www.calc.ru/Stepen-Chisla.html
  • http://www.cleverstudents.ru/powers/powers.html
  • https://calcsbox.com/post/tablica-stepenej.html
  • https://nauka.club/matematika/chislo-v-nulevoj-stepeni.html
  • https://naobumium.info/algebra/stepen1.php
  • https://umath.ru/calc/vozvedenie-chisla-v-stepen-onlajn/
  • https://izamorfix.ru/matematika/arifmetika/stepen_chisla.html
  • https://zen.yandex.ru/media/id/5c1780145bee8800a916afc6/pochemu-0-v-stepeni-0-ravno-1-5dcbd8f61322b67386d1996f
  • https://programforyou.ru/calculators/calculator-stepenej
  • https://doza.pro/art/math/algebra/table-degrees
  • https://calculat.ru/kalkulyator-stepenej
  • https://profmeter.com.ua/communication/learning/course/course19/lesson747/
  • http://math-prosto.ru/?page=pages%2Fstepeni%2Fstepeni1.php

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: