Что такое треугольник: определение, классификация, свойства

Содержание
  1. Определение прямой
  2. Определение и обозначение подобных треугольников
  3. Определение треугольника
  4. Классификация треугольников
  5. Прямая линия. Уравнение прямой.
  6. Свойства прямой
  7. Основные признаки делимости.
  8. Типы треугольников
  9. По величине углов
  10. По числу равных сторон
  11. Признаки равенства треугольников
  12. Окружность описанная вокруг треугольника
  13. Вычисление площади треугольника в пространстве с помощью векторов
  14. Свойства окружности описанной вокруг треугольника
  15. Формулы радиуса окружности описанной вокруг треугольника
  16. Теоремы о треугольниках
  17. Связь между вписанной и описанной окружностями треугольника
  18. Соотношение сторон в произвольном треугольнике
  19. Доказательство подобия треугольников через среднюю линию
  20. Медианы треугольника
  21. Свойства медиан треугольника:
  22. Формулы медиан треугольника
  23. Определение и знак подобия в геометрии
  24. Биссектрисы треугольника
  25. Свойства биссектрис треугольника:
  26. Формулы биссектрис треугольника
  27. Примеры наиболее часто встречающихся подобных треугольников
  28. Коэффициент подобия треугольников и знак подобия
  29. Взаимное расположение прямых

Определение прямой

Определение прямой начинается с определения линии. Что такое линия? Это множество точек, соединенных между собой. Линия может быть прямой, кривой, ломанной, непрерывной и даже разомкнутой. И именно из-за этого разнообразия линии очень трудно определить в пространстве. Непонятно, как пройдет та или иная кривая, когда выйдет за пределы листа. Поэтому был выделен отдельный вид линий – прямые.

Рис. 1. Виды прямых.

Когда в разговоре вы слышите прямая – люди имеют в виду прямую линию, но последнее слово в словосочетании принято опускать.

Что такое прямая в математике? Прямые это бесконечные непрерывные линии, которые не имеют искривлений. Первое правило линий: через любые две точки можно провести линию. А вот через три точки уже не всегда. Чаще всего через три точки можно провести три прямых.

Если прямая проходит через три точки, то про эти точки говорят, что они лежат на одной прямой. Прямые, как правило, обозначают малой латинской буквой или по названию двух точек на прямой.

Почему двух, а не трех? Очень просто: через две точки может пройти только одна прямая. Тогда как через одну: бесконечное множество. А три точки не имеет смысла использовать: ни к чему усложнять обозначение.

Определение и обозначение подобных треугольников

Подобными называются треугольники, у которых углы соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого.

Сходственные стороны в подобных треугольниках – это стороны, лежащие напротив их равных углов.

Для обозначения подобия фигур используется специальный символ ““. Например, △ABC ∼ △KLM.

Определение треугольника

Треугольник – это геометрическая фигура на плоскости, состоящая из трех сторон, которые образованы путем соединения трех точек, не лежащих на одной прямой. Для обозначения используется специальный символ – △.

  • Точки A, B и C – вершины треугольника.
  • Отрезки AB, BC и AC – стороны треугольника, которые часто обозначаются в виде одной латинской буквы. Например, AB = a, BC = b, AC = c.
  • Внутренность треугольника – часть плоскости, ограниченная сторонами треугольника.

Стороны треугольника в вершинах образуют три угла, традиционно обозначающиеся греческими буквами – α, β, γ и т.д. Из-за этого треугольник еще называют многоугольником с тремя углами.

Углы можно, также, обозначать с помощью специального знака ““:

  • α – ∠BAC или ∠CAB
  • β – ∠ABC или ∠CBA
  • γ – ∠ACB или ∠BCA

Классификация треугольников

В зависимости от величины углов или количества равных сторон выделяют следующие виды фигуры:

1. Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°.

2. Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

3. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и AC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (BC).

4. Разносторонний – треугольник, у которого все стороны имеют разную длину.

5. Равнобедренный – треугольник, имеющие две равные стороны, которые называются боковыми (AB и BC). Третья сторона – это основание (AC). В данной фигуре углы при основании равны (∠BAC = ∠BCA).

6. Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

Прямая линия. Уравнение прямой.

Основная информация по курсу геометрии для обучения и подготовки в экзаменам, ГВЭ, ЕГЭ, ОГЭ, ГИА Прямая линия. Уравнение прямой.

Свойства прямой

1. Через любые две точки можно провести только одну прямую линию.

Это основное свойство прямой. Оно часто используется на практике, для прокладывания прямых линий с помощью двух каких-либо объектов.

2. Если две любые точки прямой лежат на плоскости, то все точки этой прямой лежат на той же плоскости.

3. Через одну точку можно провести бесконечно много прямых.

4. Есть точки лежащие на прямой и не лежащие на ней.

Точки N и M лежат на прямой a. Точка L не лежит на прямой a.

Для записи принадлежности точки к прямой используется символ принадлежности – ∈. Например, запись Ma обозначает, что точка M принадлежит прямой a. Для того, чтобы указать что точка не принадлежит прямой можно использовать символ ∉. Например, запись La обозначает, что точка L не принадлежит прямой a.

5. Из трёх разных точек, лежащих на одной прямой, только одна может лежать между двумя другими точками.

На рисунке изображена прямая с тремя точками A, B и C, лежащими на ней. Про эти точки можно сказать: Точка B лежит между точками A и C, точка B разделяет точки A и C, – или, – точки A и C лежат по разные стороны от точки B. Также можно сказать: Точки B и C лежат по одну сторону от точки A, они не разделяются точкой A, – или, – точки A и B лежат по одну сторону от точки C.

6. Две прямые, лежащие на одной плоскости, или пересекаются друг с другом в одной точке, или являются параллельными.

Основные признаки делимости.

Признак делимости – правила с помощью которого можно относительно бегло найти, является ли число кратным предварительно выбранному. Основные признаки делимости.

Типы треугольников

Типы треугольников

Прямоугольный

Разносторонний

Равносторонний

По величине углов

сумма углов треугольника равна 180°.

Поскольку в евклидовой геометрии сумма углов треугольника равна 180°, то не менее двух углов в треугольнике должны быть острыми (меньшими 90°). Выделяют следующие виды треугольников:

  • Если все углы треугольника острые, то треугольник называется остроугольным
  • Если один из углов треугольника тупой (больше 90°), то треугольник называется тупоугольным
  • Если один из углов треугольника прямой (равен 90°), то треугольник называется прямоугольным. Две стороны, образующие прямой угол, называются катетами, а сторона, противолежащая прямому углу, называется гипотенузой.

В геометрии Лобачевского сумма углов треугольника всегда меньше 180°, а на сфере — всегда больше. Разность суммы углов треугольника и 180° называется дефектом. Дефект пропорционален площади треугольника, таким образом, у бесконечно малых треугольников на сфере или плоскости Лобачевского сумма углов будет мало отличаться от 180°.

По числу равных сторон

  • Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, третья сторона называется основанием. В равнобедренном треугольнике углы при основании равны. Высота, медиана и биссектриса равнобедренного треугольника, опущенные на основание, совпадают.
  • Равносторонним называется треугольник, у которого все три стороны равны. В равностороннем треугольнике все углы равны 60°, а центры вписанной и описанной окружностей совпадают.

Признаки равенства треугольников

Треугольник на евклидовой плоскости однозначно (с точностью до конгруэнтности) можно определить по следующим тройкам основных элементов:

  1. a, b, γ (равенство по двум сторонам и углу лежащему между ними);
  2. a, β, γ (равенство по стороне и двум прилежащим углам);
  3. a, b, c (равенство по трём сторонам).

Признаки равенства прямоугольных треугольников:

  1. по катету и гипотенузе;
  2. по двум катетам;
  3. по катету и острому углу;
  4. по гипотенузе и острому углу.

В сферической геометрии и в геометрии Лобачевского существует признак равенства треугольников по трём углам.

Окружность описанная вокруг треугольника

Определение. Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.

Вычисление площади треугольника в пространстве с помощью векторов

Пусть вершины треугольника находятся в точках .

Введём вектор площади . Длина этого вектора равна площади треугольника, а направлен он по нормали к плоскости треугольника:

и аналогично

Площадь треугольника равна .

Альтернативой служит вычисление длин сторон (по теореме Пифагора) и далее по формуле Герона.

Свойства окружности описанной вокруг треугольника

Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.
Вокруг любого треугольника можно описать окружность, и только одну.
Свойства углов
Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.

Формулы радиуса окружности описанной вокруг треугольника

Радиус описанной окружности через три стороны и площадь:

R = abc 4S

Радиус описанной окружности через площадь и три угла:

R = S 2 sin α sin β sin γ

Радиус описанной окружности через сторону и противоположный угол (теорема синусов):

R = a 2 sin α = b 2 sin β = c 2 sin γ

Теоремы о треугольниках

Теорема Дезарга: если два треугольника перспективны (прямые, проходящие через соответственные вершины треугольников, пересекаются в одной точке), то их соответственные стороны пересекаются на одной прямой.

Теорема Сонда́: если два треугольника перспективны и ортологичны (перпендикуляры, опущенные из вершин одного треугольника на стороны, противоположные соответственным вершинам треугольника, и наоборот), то оба центра ортологии (точки пересечения этих перпендикуляров) и центр перспективы лежат на одной прямой, перпендикулярной оси перспективы (прямой из теоремы Дезарга).

Теорема Чевы

Теорема Менелая

Связь между вписанной и описанной окружностями треугольника

Если d — расстояние между центрами вписанной и описанной окружностей, то.

d2 = R2 – 2Rr

r R = 4 sin α 2 sin β 2 sin γ 2 = cos α + cos β + cos γ – 1
2Rr = abc a + b + c

Соотношение сторон в произвольном треугольнике

Теорема косинусов:

Теорема синусов:

Доказательство подобия треугольников через среднюю линию

Имеется треугольник ∆ABC, mn – средняя линия. M лежит на AB, N лежит на BC.

Требуется доказательство подобия треугольников ∆MBN и ∆ABC.

Посмотрев на ∆MBN и ∆ABC, видим, что угол В — общий, а отношение:

Отсюда делаем вывод, что ∆MBN ~ ∆ABC по II признаку подобия треугольников, что и требовалось доказать.

Медианы треугольника

Определение. Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Свойства медиан треугольника:

  1. Медианы треугольника пересекаются в одной точке. (Точка пересечения медиан называется центроидом)
  2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

    AO OD = BO OE = CO OF = 2 1
  3. Медиана треугольника делит треугольник на две равновеликие части

    S∆ABD = S∆ACD

    S∆BEA = S∆BEC

    S∆CBF = S∆CAF

  4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

    S∆AOF = S∆AOE = S∆BOF = S∆BOD = S∆COD = S∆COE

  5. Из векторов, образующих медианы, можно составить треугольник.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 2b2+2c2a2

mb = 1 2 2a2+2c2b2

mc = 1 2 2a2+2b2c2

Определение и знак подобия в геометрии

Подобными называются фигуры, если одна из них представляет уменьшенную копию другой.

На нижеприведенном рисунке подобные фигуры: круги, параллелограммы, пятиугольники и ромбы.

Для обозначения термина «подобие» в геометрии используют знак «тильда», который является типографским символом и обозначается волнистой чертой:

∆ABC ~ ∆A1B1C1
— треугольники ABC и A1B1C1
подобны.

Знак «двойная тильда» ставится около чисел для демонстрации примерности или приблизительности чего-либо:

1,35 ≈ 1,4 — числа 1,35 и 1,4 приблизительно равны.

Биссектрисы треугольника

Определение. Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

Свойства биссектрис треугольника:

  1. Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, – центре вписанной окружности.
  2. Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

    AE AB = EC BC
  3. Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

    Угол между lc и lc‘ = 90°
  4. Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√bcp(pa) b + c

lb = 2√acp(pb) a + c

lc = 2√abp(pc) a + b

где p = a + b + c 2 – полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2bc cos α 2 b + c

lb = 2ac cos β 2 a + c

lc = 2ab cos γ 2 a + b

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники и и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Коэффициент подобия треугольников и знак подобия

Часто сверху знака подобия выставляют коэффициент подобия треугольников:

В математических задачах и уравнениях «тильду» используют для маркирования разных типов подобия. Часто применяется для обозначения подобия, эквивалентности.

В алгебре высказываний знаком ~ обозначают логическую операцию «эквиваленция».

При сочетании тильды и знака равенства получают обозначение отношения конгруэнтности, определения в геометрии, применяемого в контексте обозначения равенства различных фигур и тел (углов, отрезков):

 

Взаимное расположение прямых

Две прямые в пространстве могут располагаться по-разному. Самый простой и частый случай это пересечение. Если две прямые имеют одну общую точку, про такие прямые говорят, что они пересекаются.

Рис. 2. Взаимное расположение прямых.

А как прямые назвать, если они не пересекаются? Тогда – параллельные, то есть прямые, которые не имеют общих точек.

А что будет, если у двух прямых две и больше общих точек? Тогда прямые совпадут.

При пересечении двух прямых образуется две пар вертикальных углов. Вертикальные углы в каждой паре равны между собой.

Если угол пересечения равен 90 градусов, то прямые перпендикулярны друг другу.

Рис. 3. Пересечение прямых.

Источники


  • https://obrazovaka.ru/matematika/pryamaya-chasti-chto-takoe.html
  • https://MicroExcel.ru/podobie-treugolnikov/
  • https://MicroExcel.ru/treugolnik-figura/
  • https://www.calc.ru/Ponyatiye-Pryamoy-Yee-Svoystva.html
  • https://izamorfix.ru/matematika/planimetriya/pryamaya_liniya.html
  • https://www.calc.ru/101.html
  • https://dic.academic.ru/dic.nsf/ruwiki/8313
  • https://ru.onlinemschool.com/math/formula/triangle/
  • https://egemaximum.ru/treugolnik/
  • https://Sprint-Olympic.ru/uroki/geometrija/85548-znak-podobiia-v-geometrii-pravilo-i-primery-oboznacheniia.html
  • https://egemaximum.ru/podobnye-treugolniki/

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: