Десятичный логарифм: основание, свойства, формулы, функция, график

Логарифм как обратная функция к показательной

Логарифмическая функция y = logb(x) является обратной функцией к показательной x=b y.

Так что, если мы вычислим показательную функцию логарифма х (х > 0), получится:
f (f -1(x)) = blogb(x) = x

Или если мы вычислим логарифм показательной функции х:
f -1(f (x)) = logb(bx) = x

Что такое логарифм и как его посчитать

Логарифм имеет следующий вид:

где a – это основание логарифма,

b – это аргумент логарифма

Чтобы узнать значение логарифма приравняем его к X.и преобразовываем ви преобразовываем вЗапомните, что именно основание (оно выделено красным) возводится в степень.

Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!

Приведем пример:

Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:А в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:

Еще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.

Еще примеры:


Возведение в степень и логарифм

Мы знаем, что деление и умножение — это обратные математические операции. Если выражение A × B = C правдиво, то справедливо и выражение A = C / B или B = C / A. Для выражения со степенями все не так просто. Выражение AB = BA верно только для двух случаев: когда A и B равны единице или двойке. Во всех остальных случаях такое арифметическое выражение необратимо. Для решения показательных уравнений вида A x = B используются логарифмы.

Пусть у нас есть уравнение 3x = 9. Для решения такого уравнения достаточно задаться вопросом: в какую степень нужно возвести тройку, чтобы получить 9? Элементарно, во вторую. В данном случае x = 2. Изменим немного уравнение и представим, что 3x = 10. Здесь возникает сложный вопрос, как подсчитать икс, если это не целое число? Неизвестное в данном случае будет иррациональным числом, представить которое можно только с заданной степенью точности. Математики нашли элегантный способ для компактной записи таких значений. Решением уравнения 3x = 10 будет x = log 3 10. И все, этого достаточно.

Итак, логарифм log A B — это такое число, в которое требуется возвести A, чтобы получить B. A — это основание логарифма, и оно может быть любым положительным числом. Однако существует два особенных числа, для которых были введены собственные логарифмы. Это экспонента (e = 2,71828) и число 10. Логарифмы по основанию е носят название натуральных, а по основанию 10 — десятичных.

Комплекс операций инженерного калькулятора

Встроенный математический калькулятор поможет вам провести самые простые расчеты: умножение и суммирование, вычитание, а также деление. Калькулятор степеней онлайн быстро и точно возведет любое число в выбранную вами степень.

Представленный инженерный калькулятор содержит в себе все возможные вариации онлайн программ для расчетов. Kalkpro.ru содержит тригонометрический калькулятор (углы и радианы, грады), логарифмов (Log), факториалов (n!), расчета корней, синусов и арктангенсов, косинусов, тангенсов онлайн – множество тригонометрический функций и не только.

Работать с вычислительной программой можно онлайн с любого устройства, в каждом случае размер интерфейса будет подстраиваться под ваше устройство, либо вы можете откорректировать его размер на свой вкус.

Ввод цифр производится в двух вариантах:

  • с мобильных устройств – ввод с дисплеем телефона или планшета, клавишами интерфейса программы
  • с персонального компьютера – с помощью электронного дисплея интерфейса, либо через клавиатуру компьютера любыми цифрами

Обозначение десятичного логарифма

Для обозначения десятичного логарифма существует несколько способов:

  • lg
  • log10
  • log10

Так же возможно написание прописными буквами.

Таблица свойств логарифмов

Ниже представлены основные свойства логарифмов в табличном виде.

Свойство Формула Пример
Основное логарифмическое тождество 2log28 = 8‘ data-original-value=’2log28 = 8‘ data-cell-type=”text” data-db-index=”2″ data-y=”2″ data-x=”2″ data-cell-id=”C2″>2log28 = 8
Логарифм произведения log10(37) = log103 + log107‘ data-original-value=’log10(37) = log103 + log107‘ data-cell-type=”text” data-db-index=”3″ data-y=”3″ data-x=”2″ data-cell-id=”C3″>log10(37) = log103 + log107
Логарифм деления/частного log10(3 / 7) = log103log107‘ data-original-value=’log10(3 / 7) = log103log107‘ data-cell-type=”text” data-db-index=”4″ data-y=”4″ data-x=”2″ data-cell-id=”C4″>log10(3 / 7) = log103log107
Логарифм степени log10(28) = 8log102‘ data-original-value=’log10(28) = 8log102‘ data-cell-type=”text” data-db-index=”5″ data-y=”5″ data-x=”2″ data-cell-id=”C5″>log10(28) = 8log102
Логарифм числа по основанию в степени ‘ data-original-value=’‘ data-cell-type=”text” data-db-index=”6″ data-y=”6″ data-x=”2″ data-cell-id=”C6″>
Логарифм корня ‘ data-original-value=’‘ data-cell-type=”text” data-db-index=”7″ data-y=”7″ data-x=”2″ data-cell-id=”C7″>
Перестановка основания логарифма log28 = 1 / log82‘ data-original-value=’log28 = 1 / log82‘ data-cell-type=”text” data-db-index=”8″ data-y=”8″ data-x=”2″ data-cell-id=”C8″>log28 = 1 / log82
Переход к новому основанию log28 = log108 / log102‘ data-original-value=’log28 = log108 / log102‘ data-cell-type=”text” data-db-index=”9″ data-y=”9″ data-x=”2″ data-cell-id=”C9″>log28 = log108 / log102
Производная логарифма f(x) = logb x ⇒
f ‘(x) = 1 / (x ⋅ ln b)
Интеграл логарифма logb x не определен, при x≤0‘ data-original-value=’logb x не определен, при x≤0‘ data-cell-type=”text” data-db-index=”12″ data-y=”12″ data-x=”1″ data-cell-id=”B12″>logb x не определен, при x≤0
Логарифм числа 0 logb 1 = 0, b>0, b≠0‘ data-original-value=’logb 1 = 0, b>0, b≠0‘ data-cell-type=”text” data-db-index=”14″ data-y=”14″ data-x=”1″ data-cell-id=”B14″>logb 1 = 0, b>0, b≠0 logb b = 1, b>0, b≠0‘ data-original-value=’logb b = 1, b>0, b≠0‘ data-cell-type=”text” data-db-index=”15″ data-y=”15″ data-x=”1″ data-cell-id=”B15″>logb b = 1, b>0, b≠0 lim logb x = ∞, при x →∞‘ data-original-value=’lim logb x = ∞, при x →∞‘ data-cell-type=”text” data-db-index=”16″ data-y=”16″ data-x=”1″ data-cell-id=”B16″>lim logb x = ∞, при x →∞
 

Инструкция по функциям инженерного калькулятора

Для понимания возможностей программы мы даем вам краткую инструкцию, более подробно смотрите в примерах вычислений онлайн. Принцип работы с научным калькулятором такой: вводится число, с которым будет производиться вычисление, затем нажимается кнопка функции или операции, потом, если требуется, то еще цифра, например, степень, в конце – знак равенства.

  • [Inv] – обратная функция для sin, cos, tan, переключает интерфейс на другие функции
  • [Ln] – натуральный логарифм по основанию «e»
  • [ ( ] и [ ) ] – вводит скобки
  • [Int] – отображает целую часть десятичного числа
  • [Sinh] – гиперболический синус
  • [Sin] – синус заданного угла
  • [X2] – возведение в квадрат (формула x^2)
  • [n!] – вычисляет факториал введенного значения – произведение n последовательных чисел, начиная с единицы до самого введенного числа, например 4!=1*2*3*4, то есть 24
  • [Dms] – переводит из десятичного вида в формат в градусы, минуты, секунды.
  • [Cosh] – гиперболический косинус
  • [Cos] – косинус угла
  • [xy] – возведение икса в степ. игрик (формула x^y)
  • [y√x] – извлечение корня в степени y из икс
  • [Pi] – число Пи, выдает значение Pi для расчетов
  • [tanh] – гиперболический тангенс
  • [tan] – тангенс угла онлайн, tg
  • [X3] – помогает возвести в степень 3, в куб (формула x^3)
  • [3√x] – извлечь корень кубический
  • [F – E] – переключает ввод чисел в экспоненциальном представлении и обратно
  • [Exp] – позволяет вводить данные в экспоненциальном представлении.
  • [Mod] – позволяет нам вычислить остаток от деления одного числа на другое
  • [Log] – рассчитывает десятичный логарифм
  • [10^x] – возведение десяти в произвольную степень
  • [1/X] – подсчитывает обратную величину
  • [e^x] – Возведение числа Эйлера в степень
  • [Frac] – отсекает целую часть, оставляет дробную
  • [sinh-1] – обратный гиперболический синус
  • [sin-1] – арксинус или обратный синус, arcsin или 1/sin
  • [deg] – перевод угла в градусах, минутах и секундах в десятичные доли градуса, подробнее
  • [cosh-1 – обратный гиперболический косинус
  • [cos-1] – аркосинус или обрат. косинус arccos или 1/cos
  • [2*Pi] – рассчитывает число Пи, помноженное на два
  • [tanh-1] – обрат. гиперболический тангенс
  • [tan-1] – арктангенс или обратный тангенс, arctg

Как пользоваться MR MC M+ M- MS

Как возвести в степень

Чтобы возвести, к примеру, 12^3 вводите в следующей последовательности:

12 [xy] 3 [=]

12, клавиша «икс в степени игрик» [xy], 3, знак равенства [=]

Ответ: 1728

Как найти корень кубический

Допустим, что мы извлекаем корень кубический из 729, нажмите в таком порядке:

729 [3√x] [=]

729, [3√x] «кубический корень из икс», равенства [=]

Как найти корень на калькуляторе

Задача: Найти квадратный корень 36.

Решение: всё просто, нажимаем так:

36 [yx] 2 [=]

36, [y√x] «корень из икса, в степени игрик», нужную нам степень 2, равно [=]

Ответ: 6

При помощи этой функции вы можете найти корень в любой степени, не только квадратный.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма. Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = logα b , называемое основным логарифмическим тождеством, которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1. Поскольку единица в любой степени равна единице, то равенство x=logα b может существовать лишь при b=1, но при этом log1 1 будет любым действительным числом. Для исключения этой неоднозначности и берется a≠1.

Докажем необходимость условия a>0. При a=0 по формулировке логарифма может существовать только при b=0. И соответственно тогда log00 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0. А при a<0 нам бы пришлось отвергнуть разбор рациональных и иррациональных значений логарифма, поскольку степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Именно по этой причине и оговорено условие a>0.

И последнее условие b>0 вытекает из неравенства a>0, поскольку x=logα b, а значение степени с положительным основанием a всегда положительно.

Основное логарифмическое тождество

a log a b = b ( a > 0, a 1 )

(2)

Важно, что области определения правой и левой частей этой формулы отличаются. Левая часть определена только при b>0, a>0 и a ≠ 1. Правая часть определена при любом b, а от a вообще не зависит. Таким образом, применение основного логарифмического “тождества” при решении уравнений и неравенств может привести к изменению ОДЗ.

Логарифмы со специальным обозначением

Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.

Десятичный логарифм

Десятичный логарифм обозначается lg и имеет основание 10, т.е.

Чтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.

Например, вычислим lg100

Натуральный логарифм

Натуральный логарифм обозначается ln и имеет основание e, то есть

Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…

Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что

И вычислить его можно таким образом:

График функции логарифма

График логарифмической функции (логарифмика) может быть двух типов, в зависимости от значения основания a:

  • a > 1
  • 0 < a < 1

Степень можно выносить за знак логарифма

log a b p = p log a b ( a > 0, a 1, b > 0 )

(7)

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

log a ( f ( x ) 2 = 2 log a f ( x )

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть – только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

История логарифмов

Потребность в логарифмировании возникла в 16-м веке, когда в Европе набирали обороты производство, торговля и мореплавание. Именно тогда бухгалтера и астрономы, математики и мануфактурщики столкнулись с проблемой громоздких вычислений, на решение которых уходило много времени и сил. Ученые постоянно возводили в степень и вычисляли корни, но сложность расчетов замедляла прогресс. Именно тогда математикам пришла идея заменить сложные вычисления степеней и корней на соответствующие операции умножения и деления, а затем — сложения и вычитания. Подобный ход конем позволил ученым производить операции поиска корней и возведения степень над огромными числами, складывая и вычитая при этом соответствующие логарифмы.

Первые логарифмические таблицы были созданы в 1614 году шотландским математиком Джоном Непером. Непер был профессиональным математиком, он занимался астрономией и не понаслышке знал о сложностях астрономических расчетов. Позднее знаменитый физик и астроном Пьер-Симон Лаплас говорил, что возникновение логарифмов значительно уменьшило вычислительный труд астронома и удвоило его жизнь. Логарифмические таблицы со временем совершенствовались и в итоге стали универсальным инструментом для громоздких вычислений. Математики старой школы до сих пор используют логарифмические линейки и считают в уме с такой же скоростью, с какой работают современные калькуляторы.

Если вы не застали времена, когда каждый математик имел в своем арсенале логарифмическую линейку и не умеете ими пользоваться, то предлагаем вам наш онлайн-калькулятор. Данная программа предназначена для вычисления любых логарифмов, в том числе и десятичных. Для расчетов вам потребуется выбрать в меню тип «Десятичный» и ввести значения в соответствующие ячейки. Калькулятор может вычислить собственно десятичный логарифм для числа X или вернуть значение числа X, если известен его логарифм.

Характерные признаки десятичных логарифмов.

Первый признак десятичного логарифма. Десятичный логарифм целого не отрицательного числа, представленного единицей со следующими нулями, есть целое положительное число, равное численности нулей в записи выбранного числа.

Возьмем, lg 100 = 2, lg 1 00000 = 5.

Обобщенно, если

То а= 10n, из чего получаем

lg a = lg 10n = n lg 10 = п.

Второй признак. Десятичный логарифм положительной десятичной дроби, показанный единицей с предыдущими нулями, равен – п, где п – численность нулей в представлении этого числа, учитывая и нуль целых.

Рассмотрим, lg 0,001 = – 3, lg 0,000001 =-6.

Обобщенно, если

,

То a= 10-n и получается

lga= lg 10n =-n lg 10 =-п

Третий признак. Характеристика десятичного логарифма не отрицательного числа, большего единицы, равна численности цифр в целой части этого числа исключая одну.

Разберем данный признак 1) Характеристика логарифма lg 75,631 приравнена к 1.

И правда, 10 < 75,631 < 100. Из этого можно сделать вывод

lg 10 < lg 75,631 < lg 100,

или

1 < lg 75,631 < 2.

Отсюда следует,

lg 75,631 = 1 +б,

где б — известная правильная положительная дробь. И, следовательно,

[lg 75,631] = 1,

Именно это и нужно было обосновать.

2) Характеристика логарифма lg 5673,1 =3.

И действительно,

1000 < 5673,1 < 10 000.

Соответственно

lg 1000 < lg 5673,1 < lg 10 000,

или

3 < lg 5673,l < 4.

можно представить как,

[lg 5673,1] = 3.

По большому счету, если целая часть не отрицательного числа а, большего единицы, включает п цифр, то

10n-1 <а< 10n.

Из чего делаем обобщение

lg 10n -1lgа< lg 10n.,

или

n-1 < lg a < n.

И можно заключить,

[lg a] = n – 1.

Четвертый признак десятичного логарифма. Характеристика десятичного логарифма положительной десятичной дроби, меньшей единицы, равна – п, где п – число нулей в заданной десятичной дроби перед первой значащей цифрой, включая и нуль целых.

Разберем. Характеристика логарифма lg 0,0015=-3.

Обоснованно,

0,001 < 0,0015 < 0,01.

получаем

lg 0,001 < lg 0,0015 < lg 0,01,

или

– 3 < lg 0,0015 < -2.

Выходит, lg 0,0015 = – 3 + б, где б – известная правильная положительная дробь. И таким образом

[lg 0,0015] = -3.

Характеристика логарифма lg 0,6 = – 1. И в правду верно.

0,1< 0,6 < 1.

имеем

lg 0,1 < lg 0,6< lg 1,

или

-1 < lg 0,6 < 0.

Вследствие этого получаем ,

lg 0,6 = -1+ б,

где б — известная правильная положительная дробь. И, таким образом

[lg0,6] = -1.

Обобщая рассмотренное выше сделаем вывод: если перед первой значащей цифре правильной десятичной дроби б есть п нулей (включая в том числе и нуль целых), то

или

n <lga < – (n- 1).

Из чего можно вывести,

[lg a ] = – n.

Пятый признак. Если помножить числа на 10n ,то десятичный логарифм его возрастет на п.

Действительно, по формуле логарифма произведения

lg (а • 10n) = lg a + lg 10n = lg a + п.

Возьмем,

lg (739,15 •100) = lg 739,15 + 2;

lg (28 •10000) = lg 28 + 4.

Перемещение запятой в положительной десятичной дроби на п знаков вправо равноценно операции перемножения заданной дроби с 10n. Следовательно, при перемещении запятой в положительной десятичной дроби на п знаков вправо десятичный логарифм возрастет на п.

Шестой признак. Если поделить число на 10n, то десятичный логарифм уменьшается на п.

Рассмотрим,

lg 2,68/100= lg 2,68-2;

lg 0,46/1000 = lg 0,46 – 3.

При перемещении запятой в положительной десятичной дроби на п знаков влево десятичный логарифм уменьшается на п.

Например, lg 0,3567 = lg 35,67 -2;lg 0,00054 = lg 0,54 -3.

Все обоснованные ранее признаки десятичных логарифмов касались их характеристики. Далее разберем признаки мантиссы десятичных логарифмов.

Седьмой признак десятичного логарифма. Мантисса десятичного логарифма положительного числа не меняется, если умножить это число на 10n с заданным целым показателем п.

Обоснованно, что при заданном целом п (как положительном, так и отрицательном)

lg (а • 10n) = lg a + lg 10n = lg a + п.

Но дробная часть числа не меняется при прибавлении к нему целого числа.

Смещение запятой в десятичной дроби вправо или влево равнозначно операции перемножения этой дроби на степень числа десять с целым показателем п (положительным или отрицательным). И следовательно, при смещении запятой в положительной десятичной дроби влево или вправо мантисса десятичного логарифма этой дроби не меняется.

Так, {lg 0,0053} = {lg 0,53} = {lg 0,0000053}.

Понятие десятичного логарифма

Десятичный логарифм lgA — это такое число, в которое требуется возвести 10, чтобы получить число A. Из программы математики средней школы известно, что любое число можно представить в виде 10 a или простыми словами в виде десятки в некоторой степени. Это достаточно четко иллюстрируется примером, когда число кратно 10:

  • 100 = 102
  • 1 000 = 103
  • 10 000 000 = 107.

Но что делать, если через десятку требуется представить число 2077? Здесь на сцену выходят десятичные логарифмы. При помощи логарифма мы можем записать lg2077 и любому математику станет ясно, что это за иррациональное число. Вычислить это значение приблизительно можно следующим образом. Если lg1000 = 3, а lg10000 = 4, то 3 > lg2077 > 4. Так как 2077 значительно ближе к 1 000, чем к 10 000, то и значение логарифма также будет в районе тройки, например, 3,2. Подсчитать более точное значение можно при помощи онлайн-калькулятора, которое будет равно lg2077 = 3,317436… Вычислить точное значение такого логарифма невозможно, так как оно иррационально и бесконечно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями, которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

Формула перехода к новому основанию

log a b = log c b log c a ( a > 0, a 1, b > 0, c > 0, c 1 )

(8)

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

log a b = 1 log b a ( a > 0, a 1, b > 0, b 1 )

(9)

Несколько простых примеров с логарифмами

Пример 1. Вычислите: lg2 + lg50.
Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.

Пример 2. Вычислите: lg125/lg5.
Решение. lg125/lg5 = log5125 = 3. Мы использовали формулу перехода к новому основанию (8).
Источники


  • https://MicroExcel.ru/logarifmy/
  • https://yourrepetitor.ru/chto-takoe-logarifm-kak-poschitat-logarifm-svojstva-logarifmov-primery-resheniya-logarifmov/
  • https://BBF.ru/calculators/168/
  • https://kalkpro.ru/scientific-calc/
  • https://calculat.ru/kalkulyator-desyatichnyj-logarifm
  • https://www.calc.ru/Ponyatiye-Logarifma.html
  • http://www.repetitor2000.ru/svoistva_logarifmov_01.html
  • https://www.calc.ru/Desyatichniy-Logarifm.html

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: