Формулы периметра и программы для расчета периметра

Основные свойства квадрата

Квадратом также могут быть параллелограмм, ромб или прямоугольник если они имеют одинаковые длины диагоналей, сторон и одинаковые углы.
1. Все четыре стороны квадрата имеют одинаковую длину, то есть они равны:

AB = BC = CD = AD

2. Противоположные стороны квадрата параллельны:

AB||CD, BC||AD

3. Все четыре угла квадрата прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

4. Сумма углов квадрата равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

5. Диагонали квадрата имеют одинаковой длины:

AC = BD

6. Каждая диагональ квадрата делит квадрат на две одинаковые симметричные фигуры
7. Диагонали квадрата пересекаются под прямым углом, и разделяют друг друга пополам:
ACBD AO = BO = CO = DO = d
2
8. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности
9. Каждая диагональ делит угол квадрата пополам, то есть они являются биссектрисами углов квадрата:

ΔABC = ΔADC = ΔBAD = ΔBCD
∠ACB = ∠ACD = ∠BDC = ∠BDA = ∠CAB = ∠CAD = ∠DBC = ∠DBA = 45°

10. Обе диагонали разделяют квадрат на четыре равные треугольника, причем эти треугольники одновременно и равнобедренные и прямоугольные:

ΔAOB = ΔBOC = ΔCOD = ΔDOA

Как посчитать периметр помещения

Периметр – это длина геометрической фигуры по её внешней границе.

Периметр помещения – это сумма длин сторон помещения. Соответственно для вычисления периметра необходимо суммировать все стороны.

Формула расчета периметра помещения:

P = 2 * (A + B)

А – длина помещения;
В – ширина помещения;

Для помещения произвольной конфигурации используются более сложные формулы расчета и этот расчет быстрее и удобнее выполнить с применением чертежных программных продуктов.

В нашей проектной организации Вы можете заказать расчет периметра помещения на основании технологического или конструкторского задания. Расчет выполним для любой конфигурации по Вашему рисунку с применением самых современных чертежных программ 2D-черчения.

Быстро выполнить эту простейшую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.


На этой странице представлен самый простой онлайн калькулятор расчета периметра помещения. С помощью этого калькулятора в один клик вы можете вычислить периметр помещения, если известны длина и ширина.

Что необходимо знать о квадрате?

Прежде чем приступать к проведению вычислений, необходимо знать некоторые важные сведения об этой фигуре, среди которых:

  • все стороны квадрата равны;
  • все углы квадрата прямые;
  • площадь квадрата – это способ исчисления того, как много места занимает фигура в двухмерном пространстве;
  • двухмерное пространство – это лист бумаги или экран компьютера, где нарисован квадрат;
  • периметр не является индикатором наполненности фигуры, однако позволяет работать с его сторонами;
  • периметр – это сумма всех сторон квадрата;
  • подсчитывая периметр, мы оперируем одномерным пространством, что означает фиксацию результата в метрах, а не метрах квадратных (площадь).

Как вычислить периметр

Периметр обозначается латинской буквой P. Его можно измерить в сантиметрах, миллиметрах, метрах или дециметрах. Чтобы узнать периметр, следует измерить длину всех сторон многоугольника. Полученные значения нужно сложить. Итоговая сумма и станет ответом на вопрос: «Чему равен периметр многоугольника».

Периметр – это длина линий, которые ограничивают замкнутую фигуру (квадрат, прямоугольник, треугольник и др.).

Например, перед вами многоугольник со сторонами 10, 12, 13 и 11 см. Складываем вышеназванные числа (10+12+13+11) и получаем сумму 46. Это и есть периметр многоугольника.

Для удобства вычисления периметра в геометрии существует ряд формул. Каждая формула соответствует определенной фигуре.

Периметр и площадь прямоугольника

Стороны прямоугольника, находящиеся друг напротив друга и имеющие одинаковую длину, называются противолежащими. Это длина и ширина, они условно обозначаются латинскими буквами a и b. Формула для вычисления периметра прямоугольника выглядит так:

P= (a+b)*2

Используя эту формулу, мы сначала находим сумму ширины и длины, а затем умножаем ее на два.

Например, перед нами прямоугольник, имеющий длину 6 см и ширину 2 см.

P= (6+2) * 2

P= 16

Ответ: 16 см

Чтобы узнать площадь прямоугольника, следует длину умножить на ширину. Формула выглядит так:

S= a*b

Например, в условиях задачи сказано, что прямоугольник имеет длину 5 см и ширину 2см. Меняем буквы a и b на указанные числа.

S= 5*2

S=10см2

Ответ: 10 см2

Свойства квадрата.

– у всех 4-х сторон квадрата одинаковая длина, т.е. стороны квадрата равны:

AB = BC = CD = AD

– противолежащие стороны квадрата параллельны:

AB||CD, BC||AD

– каждый угол квадрата прямой:

ABC = BCD = CDA = DAB = 90°

– сумма углов квадрата равна 360°:

ABC + BCD + CDA + DAB = 360°

– каждая диагональ квадрата имеет такую же длину, как и другая:

AC = BD

– каждая из диагоналей квадрата делит квадрат на 2 одинаковые симметричные фигуры.

– угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:

AC┴BD;AO = BO = CO = DO = d/2

точку пересечения диагоналей называют центр квадрата и она оказывается центром вписанной и описанной окружностей.

– все диагонали делят угол квадрата на две равные части, таким образом, они оказываются биссектрисами углов квадрата:

ΔABC = ΔADC = ΔBAD = ΔBCD

ACB = ACD = BDC = BDA = CAB = CAD = DBC = DBA = 45°

– диагонали делят квадрат на 4 одинаковых треугольника, кроме того, полученные треугольники в одно время и равнобедренные и прямоугольные:

ΔAOB = ΔBOC = ΔCOD = ΔDOA

Периметры фигур

Расчет периметра квадрата, прямоугольника, треугольника, круга (периметры фигур). Периметры фигур

Площадь квадрата

Определение.

Площадью квадрата называется пространство, ограниченное сторонами квадрата, то есть в пределах периметра квадрата.

Площадь квадрата больше площади любого четырехугольника с таким же периметром.

Формулы определения площади квадрата

1. Формула площади квадрата через сторону квадрата:

S = a2

2. Формула площади квадрата через периметр квадрата:
S = P2
16
3. Формула площади квадрата через диагональ квадрата:
S = d2
2
4. Формула площади квадрата через радиус описанной окружности:

S = 2R2

5. Формула площади квадрата через диаметр описанной окружности:
S = Do2
2
6. Формула площади квадрата через радиус вписанной окружности:

S = 4r2

7. Формула площади квадрата через диаметр вписанной окружности:

S = Dв2

8. Формула площади квадрата через длину отрезка l:
S = l 2 16
5

Диагональ квадрата.

Диагональю квадрата является всякий отрезок, который соединяет 2-е вершины противолежащих углов квадрата.

Диагональ всякого квадрата больше стороны этого квадрата в √2 раз.

Формулы для определения длины диагонали квадрата:

1. Формула диагонали квадрата через сторону квадрата:

2. Формула диагонали квадрата через площадь квадрата:

3. Формула диагонали квадрата через периметр квадрата:

4. Сумма углов квадрата = 360°:

5. Диагонали квадрата одной длины:

6. Все диагонали квадрата делят квадрат на 2-е одинаковые фигуры, которые симметричны:

7. Угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:

8. Формула диагонали квадрата через длину отрезка l:

9. Формула диагонали квадрата через радиус вписанной окружности:

R – радиус вписанной окружности;

D – диаметр вписанной окружности;

d – диагональ квадрата.

10. Формула диагонали квадрата через радиус описанной окружности:

R – радиус описанной окружности;

D – диаметр описанной окружности;

d – диагональ.

11. Формула диагонали квадрата через линию, которая выходит из угла на середину стороны квадрата:

C – линия, которая выходит из угла на середину стороны квадрата;

d – диагональ.

Периметр квадрата. Площадь квадрата.

Вписанный круг в квадрат – это круг, примыкающий к серединам сторон квадрата и имеющий центр на пересечении диагоналей квадрата.

Радиус вписанной окружности – сторона квадрата (половина).

Площадь круга вписанного в квадрат меньше площади квадрата в π/4 раза.

Круг, описанный вокруг квадрата – это круг, который проходит через 4-ре вершины квадрата и который имеет центр на пересечении диагоналей квадрата.

Радиус окружности описанной вокруг квадрата больше радиуса вписанной окружности в √2 раз.

Радиус окружности описанной вокруг квадрата равен 1/2 диагонали.

Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.

Формулы определения длины диагонали квадрата

1. Формула диагонали квадрата через сторону квадрата:

d = a·√2

2. Формула диагонали квадрата через площадь квадрата:

d = √2S

3. Формула диагонали квадрата через периметр квадрата:
d = P
2√2
4. Формула диагонали квадрата через радиус описанной окружности:

d = 2R

5. Формула диагонали квадрата через диаметр описанной окружности:

d = Dо

6. Формула диагонали квадрата через радиус вписанной окружности:

d = 2r2

7. Формула диагонали квадрата через диаметр вписанной окружности:

d = Dв2

8. Формула диагонали квадрата через длину отрезка l:
d = l 2√10
5

Найти периметр квадрата

Выберите известную величину
Введите длину
стороны

квадрата:

a =

Вводить можно числа или дроби (-2.4, 5/7, …).

Формула площади квадрата через радиус вписанной окружности

{S= 4 cdot r ^2}

Пример

Возьмем, к примеру, квадрат 6 на 6, то есть со стороной, равной шести сантиметрам.

По первому способу: пусть диагональ будет равна С, а боковая сторона – А.

Тогда получим, что С=√А^2+А^2 или С=√2А^2.

Запишем в числовом виде: С =√36 + 36. Получили √72, а это 3√8 или 6√2.

А теперь найдем ту же диагональ, но уже по второму способу: С = А√2 или в числовом виде: 6√2

Теперь видно, насколько второй способ быстрее, легче и самое главное – эффективнее, особенно в таких легких задачках, ведь на экзамене дорога каждая минута!

Вывод

Вопросом, как посчитать диагонали квадрата, обычно задаются ученики, пропустившие эту тему в школе. Однако такие фундаментальные правила математики должен знать каждый! Желательно решать как можно быстрее, и для этого необходимы знания сокращенных формул. Все это предельно просто и легко, но вместе с тем является базой, необходимой для решения в дальнейшем гораздо более сложных задач. И важную часть этой базы занимает квадрат.


Источники


  • https://ru.onlinemschool.com/math/formula/square/
  • https://www.center-pss.ru/math/perimetr/pomeshenie.htm
  • http://obvi.ru/science/mathematics/how-to-find-the-area-and-perimeter-of-square/
  • https://topkin.ru/voprosy/nauka-voprosy/chto-takoe-perimetr-i-ploshhad/
  • https://www.calc.ru/Geometricheskiye-Figury-Kvadrat.html
  • https://www.calc.ru/perimetr-pryamougolnika.html
  • https://ru.onlinemschool.com/math/assistance/figures_perimeter/square/
  • https://mnogoformul.ru/formuly-ploshhadi-kvadrata
  • https://1Ku.ru/obrazovanie/65472-kak-poschitat-diagonal-kvadrata-formula-dliny-diagonali-kvadrata/

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: