Как найти периметр трапеции: равнобедренной, разносторонней, прямоугольной

Содержание
  1. Принятые в формулах обозначения
  2. Найти периметр трапеции
  3. Основные свойства равнобедренной трапеции
  4. Формулы длин сторон равнобедренной трапеции:
  5. Формулы длины средней линии равнобедренной трапеции:
  6. Формулы определения длины высоты равнобедренной трапеции:
  7. В исходных данных: все стороны
  8. Периметр произвольной трапеции
  9. Вписанная окружность
  10. Решение задач о прямоугольной трапеции
  11. Задача Даны три стороны, одна из которых перпендикулярная боковая.
  12. Задача Даны оба основания и угол при основании
  13. Свойства и признаки равнобедренной трапеции
  14. Формула определения радиуса вписанной в трапецию окружности
  15. Формулы определения длин отрезков проходящих через трапецию:
  16. Определение периметра прямоугольной трапеции
  17. Известны: диагонали и углы между ними
  18. Высота трапеции через стороны
  19. В задаче даны: боковые стороны и углы при нижнем основании
  20. Высота равнобедренной трапеции через среднюю линию и площадь

Принятые в формулах обозначения

Во всех приведенных ниже математических записях верны такие прочтения букв.

произвольная трапеция равнобедренная трапеция название
а а нижнее основание
в в верхнее основание
с, d с боковые стороны
н н высота
m m средняя линия
d1, d2 d1 диагонали
s s площадь
α, β α углы при нижнем основании
γ, δ γ, δ углы на пересечении диагоналей

Найти периметр трапеции

Введите данные:
a =
b =
c =
d =

Вводить можно числа или дроби (-2.4, 5/7, …).

Основные свойства равнобедренной трапеции

1. Сумма углов прилегающих к боковой стороне равнобедренной трапеции равна 180°:

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

2. Если в равнобедренную трапецию можно вписать окружность, то боковая сторона равна средней лини трапеции:

AB = CD = m

3. Вокруг равнобедренной трапеции можно описать окружность
4. Если диагонали взаимно перпендикулярны, то высота равна полусумме оснований (средней лини):

h = m

5. Если диагонали взаимно перпендикулярны, то площадь трапеции равна квадрату высоты:

SABCD = h2

6. Если в равнобедренную трапецию можно вписать окружность, то квадрат высоты равен произведению основ трапеции:

h2 = BC · AD

7. Сумма квадратов диагоналей равна сумме квадратов боковых сторон плюс удвоенному произведению основ трапеции:

AC2 + BD2 = AB2 + CD2 + 2BC · AD

8. Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции:

HF BC, HF AD

9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) – равен полуразности оснований:
AP = BC + AD
2
PD = AD – BC
2
10. Также смотрите свойства трапеции

Формулы длин сторон равнобедренной трапеции:

1. Формулы длины сторон через другие стороны, высоту и угол:

a = b + 2h ctg α = b + 2c cos α

b = a – 2h ctg α = a – 2c cos α

c = h = ab
sin α 2 cos α
2. Формула длины сторон трапеции через диагонали и другие стороны:
a = d12c2 b = d12c2 c = √d12ab
b a
3. Формулы длины основ через площадь, высоту и другую основу:
a = 2S b b = 2S a
h h
4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:
с = S
m sin α
5. Формулы длины боковой стороны через площадь, основания и угол при основе:
с = 2S
(a + b) sin α

Формулы длины средней линии равнобедренной трапеции:

1. Формула определения длины средней линии через основания, высоту и угол при основании:

m = ah ctg α = b + h ctg α = a – √c2h2 = b + √c2h2

2. Формула средней линии трапеции через площадь и сторону:
m = S
c sin α

Формулы определения длины высоты равнобедренной трапеции:

1. Формула высоты через стороны:
h = 1 4c2 – (ab)2
2
2. Формула высоты через стороны и угол прилегающий к основе:
h = ab tg β = c sin β
2

В исходных данных: все стороны

Для того чтобы найти высоту трапеции в общем случае потребуется воспользоваться такой формулой:

н = √(с2 – (((а – в)2 + с2 – d2)/(2(а – в)))2). Номер 1.

Не самая короткая, но и встречается в задачах достаточно редко. Обычно можно воспользоваться другими данными.

Формула, которая подскажет, как найти высоту равнобедренной трапеции в той же ситуации, гораздо короче:

н = √(с2 – (а – в)2/4). Номер 2.

Периметр произвольной трапеции

Периметр произвольной трапеции, в которой AB=a, BC=b, CD=c, AD=d, имеет вид:

[ LARGE P_{ABCD} = a + b + c + d ]

где:
P – периметр трапеции
a, b, c, d – стороны трапеции

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и она делит боковую сторону точкой касания на два отрезка — и , то , то

Решение задач о прямоугольной трапеции

Прямоугольной называют трапецию, у которой углы при одной из боковых сторон равны 900. Рассмотрим пример, как найти боковую сторону трапеции, если известны три другие стороны.

Задача Даны три стороны, одна из которых перпендикулярная боковая.

Допустим, нам дана прямоугольная трапеция АВСД, у которой АВ перпендикулярно ВС. Известно, что АВ = 12 см, ВС = 1 см, АД = 6 см. Необходимо найти большую боковую сторону.

Решение:

Из точки С опускаем проводим высоту СК и получаем прямоугольный треугольник СДК и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны СК = АВ = 12 см, а АК = ВС = 1 см.

Находим отрезок КД:

  • КД = АД – АК = 6 – 1 = 5 (см)

Согласно теореме Пифагора:

  • СД2=СК2+КД2=122+52=144+25=169
  • СД = √169 = 13 (см)

Ответ: СД = 13 см

Задача Даны оба основания и угол при основании

Дана трапеция АВСД, у которой основания ВС и АД равны 6 и 10 см соответственно, угол ВАД – прямой, а СДА равен 45 градусов. Найдите меньшую боковую сторону.

  1. Проводим высоту СК и получаем прямоугольный треугольник СКД и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны АК = ВС = 6 см.
  2. КД = АД – АК = 10 – 6 = 4 см
  3. cos 45 = √2/2 = КД / СД, отсюда СД = КД / cos 45
  4. Получаем СД = 4/√2/2 = 4√2 (см)

Ответ: СД = 4√2 см

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:
r = h
2

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:
KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Определение периметра прямоугольной трапеции

Периметр прямоугольной трапеции определяется по той же формуле, что и периметр равнобедренной, однако в этом случае формула имеет вид:

Периметр ABCD = АВ+ВС+СD+AD. Рассмотрим пример определения периметра прямоугольной трапеции. В данном примере сторона АВ = 5 см, ВС = 7см, AD = 10 см, длина стороны СD неизвестна.

  • опустим высоту из вершины С, высота CH = AB = 5см;
  • исходя из рисунка 3, AH = BC = 7 см;
  • HD = AD – AH = 10 – 7 = 3 см;
  • далее для нахождения периметра, необходимо определить длину стороны СD, являющейся в равнобедренном треугольнике СHD гипотенузой. Согласно теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, таким образом, длина стороны СD = 5,83 см: CD = = 5,83 см;
  • подставляя полученные значения в формулу, получим периметр равный 27,83 см: Периметр ABCD = 5+7+5,83+10 = 27,83 см.

Итак, определить длину одной из сторон трапеции можно воспользовавшись теоремой Пифагора. Так же, для определения длины различных сторон трапеции могут помочь следующие формулы:

  • формула расчета длины основания через среднюю линию;
  • формулы длин сторон через высоту и угол при нижнем основании трапеции;
  • формулы длин сторон трапеции через диагонали, высоту и угол между диагоналями;
  • формулы длин сторон равнобедренной трапеции через площадь.

Как видно, для решения задач, связанных с расчетом длины сторон трапеции, существует более чем широкий спектр математических приемов, выбор которых обусловлен конкретной ситуацией.

Известны: диагонали и углы между ними

Обычно к этим данным присоединяются еще известные величины. Например, основания или средняя линия. Если даны основания, то для ответа на вопрос, как найти высоту трапеции, пригодится такая формула:

н = (d1* d2 * sin γ) / (а + в) или н = (d1* d2 * sin δ) / (а + в). Номер 5.

Это для общего вида фигуры. Если дана равнобедренная, то запись преобразится так:

н = (d12 * sin γ) / (а + в) или н = (d12 * sin δ) / (а + в). Номер 6.

Когда в задаче идет речь о средней линии трапеции, то формулы для поиска ее высоты становятся такими:

н = (d1* d2 * sin γ) / 2m или н = (d1* d2 * sin δ) / 2m. Номер 5а.

н = (d12 * sin γ) / 2m или н = (d12 * sin δ) / 2m. Номер 6а.

Высота трапеции через стороны

Высота трапеции через стороны рассчитывается по формуле:

$h = sqrt{b^2 – (frac{(a – d)^2 + b^2 – c^2}{2 cdot (a – d)})^2}$, где

$a$ — основание большего размера;

$d$ — основание меньшего размера;

$b$ — первая боковая сторона;

$c$ — вторая боковая сторона.

Пример 1

Задача

Дана трапеция с основаниями $a$ и $d$, равными $4.5$ и $2.5$ см и боковыми сторонами $b, c$, равными $2$ и $2sqrt2$ см. Найдите, чему равна высота трапеции $h$.

Решение:

Воспользуемся вышеприведённой формулой:

$h = sqrt{2^2 – (frac{(4.5 – 2.5)^2 + 2^2 – (2sqrt2)^2}{2 cdot (4.5 — 2.5)})^2} = sqrt{4 – (frac{4 + 4 — 8}{4}} = 2$ см.

Проверим полученное значение с помощью онлайн-калькулятора. Результат совпадает, а значит, задача решена верно.

В задаче даны: боковые стороны и углы при нижнем основании

Принимают, что угол α прилежит к боковой стороне с обозначением «с», соответственно угол β к стороне d. Тогда формула для того, как найти высоту трапеции, в общем виде будет такой:

н = с * sin α= d * sin β. Номер 3.

Если фигура равнобедренная, то можно воспользоваться таким вариантом:

н = с * sin α= ((а – в) / 2) * tg α. Номер 4.

Высота равнобедренной трапеции через среднюю линию и площадь

Если известна площадь равнобедренной трапеции и длина её средней линии, то высоту можно рассчитать по формуле:

$h = frac{S}{m}$, где

$m$ — средняя линия трапеции;

$S$ — её площадь.

Рассмотрим на примере, как найти высоту равнобедренной трапеции, если известны основания.

Пример 2

Задача

Дана равнобедренная трапеция с основаниями $a$ и $d$, соответственно равными $3$ и $5$ см, и площадью, равной $8$ $см^2$. Найдите, чему равна высота трапеции.

Решение:

Найдём среднюю линию трапеции:

$m = frac{a + d}{2} = frac{3 + 5}{2} = 4$ см.

Теперь сосчитаем высоту трапеции:

$h = frac{8}{4} = 2$ см.

Результаты совпадают с решением онлайн-калькулятора, а значит, ответ — верный.

Источники


  • https://www.syl.ru/article/187872/mod_kak-nayti-vyisotu-trapetsii-formulyi-na-vse-sluchai-jizni
  • https://ru.onlinemschool.com/math/assistance/figures_perimeter/trapezium/
  • https://ru.onlinemschool.com/math/formula/trapezium_isosceles/
  • https://calcsbox.com/post/formula-perimetra-trapecii.html
  • https://egemaximum.ru/trapeciya-svojstva-trapecii/
  • https://elhow.ru/ucheba/geometrija/planimetrija/kak-najti-bokovye-storony-trapecii
  • https://ru.onlinemschool.com/math/formula/trapezium/
  • http://kakumno.ru/najti-perimetr-trapecii.html
  • https://spravochnick.ru/calculators/kak_nayti_vysotu_trapecii/

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: