Как найти производную логарифма: натурального, сложной функции

Производные простых функций

1. Производная от числа равна нулю
с´ = 0
Пример:
5´ = 0

Пояснение:
Производная показывает скорость изменения значения функции при изменении аргумента. Поскольку число никак не меняется ни при каких условиях – скорость его изменения всегда равна нулю.
2. Производная переменной равна единице
x´ = 1
Пояснение:
При каждом приращении аргумента (х) на единицу значение функции (результата вычислений) увеличивается на эту же самую величину. Таким образом, скорость изменения значения функции y = x точно равна скорости изменения значения аргумента.
3. Производная переменной и множителя равна этому множителю
сx´ = с
Пример:
(3x)´ = 3
(2x)´ = 2
Пояснение:
В данном случае, при каждом изменении аргумента функции (х) ее значение (y) растет в с раз. Таким образом, скорость изменения значения функции по отношению к скорости изменения аргумента точно равно величине с.

Откуда следует, что
(cx + b)’ = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).

4. Производная переменной по модулю равна частному этой переменной к ее модулю
|x|’ = x / |x| при условии, что х ≠ 0
Пояснение:
Поскольку производная переменной (см. формулу 2) равна единице, то производная модуля отличается лишь тем, что значение скорости изменения функции меняется на противоположное при пересечении точки начала координат (попробуйте нарисовать график функции y = |x| и убедитесь в этом сами. Именно такое значение и возвращает выражение x / |x| . Когда x < 0 оно равно (-1), а когда x > 0 – единице. То есть при отрицательных значениях переменной х при каждом увеличении изменении аргумента значение функции уменьшается на точно такое же значение, а при положительных – наоборот, возрастает, но точно на такое же значение.
5. Производная переменной в степени равна произведению числа этой степени и переменной в степени, уменьшенной на единицу
( xc )’= cxc-1, при условии, что xc и сxc-1,определены а с ≠ 0
Пример:
(x2 )’ = 2x
(x3)’ = 3x2
Для запоминания формулы:
Снесите степень переменной “вниз” как множитель, а потом уменьшите саму степень на единицу. Например, для x2 – двойка оказалась впереди икса, а потом уменьшенная степень (2-1=1) просто дала нам 2х. То же самое произошло для x3 – тройку “спускаем вниз”, уменьшаем ее на единицу и вместо куба имеем квадрат, то есть 3x2 . Немного “не научно”, но очень просто запомнить.
6. Производная дроби 1/х
(1/х)’ = – 1 / x2
Пример:
Поскольку дробь можно представить как возведение в отрицательную степень
(1/x)’ = (x-1 )’ , тогда можно применить формулу из правила 5 таблицы производных
(x-1 )’ = -1x-2 = – 1 / х2
7. Производная дроби с переменной произвольной степени в знаменателе
( 1 / xc )’ = – c / xc+1
Пример:
( 1 / x2 )’ = – 2 / x3
8. Производная корня (производная переменной под квадратным корнем)
( √x )’ = 1 / ( 2√x ) или 1/2 х-1/2
Пример:
( √x )’ = ( х1/2 )’ значит можно применить формулу из правила 5
( х1/2 )’ = 1/2 х-1/2 = 1 / (2√х)
9. Производная переменной под корнем произвольной степени
( n√x )’ = 1 / ( n n√xn-1 )
.

Приведенная здесь таблица производных простых функций содержит только основные преобразования, которые (по большому счету) следует запомнить наизусть.

Что такое предел

Вначале разберемся с понятием предела. Рассмотрим какое-нибудь математическое выражение, например, i = 1/n. Можно увидеть, что при увеличении «n «, значение «i «будет уменьшаться, а при стремлении «n» к бесконечности (которая обозначается значком ∞), «i» будет стремиться к предельному значению (называемого чаще просто пределом), равному нулю. Выражение предела (обозначаемого как lim) для рассматриваемого случая можно записать в виде lim n →∞ (1/ n) = 0 .

Существуют различные пределы для различных выражений. Одним из таких пределов, вошедших в советские и российские учебники как второй замечательный предел, является выражение lim n →∞ (1+1/ n) n . Уже в Средневековье было установлено, что пределом этого выражения является число е.

К первому же замечательному пределу относят выражение lim n →∞ (Sin n / n) = 1.

Как найти производную ex – в этом видео.

Виды логарифмов

Прежде, чем перейти к формулам производных, напомним, что для некоторых логарифмов предусмотрены отдельные названия:

1. Десятичный логарифм (lg x)

lg x = log10x

Т.е. это логарифм числа x основанию 10.

2. Натуральный логарифм (ln x)

ln x = loge x

Т.е. это логарифм числа x по основанию e (экспонента).

Как находить производные сложных логарифмических функций?

Что можно сказать о производной логарифмической функции y = lnx на основании таблицы производных? Можно сказать, что она существует и выражается формулой

(1)

Однако в большинстве задач математического анализа, с которыми придётся столкнуться в дальнейшем, присутствует сложная логарифмическая функция. Она вычисляется несколько иначе.

В случае сложной логарифмической функции y = lnu, где u – дифференцируемая функция аргумента x, формула (1) примет вид

(2)

Пользуясь формулой (2), найдём производную логарифмической функции с произвольным положительным основанием a. Пусть

В результате применения свойств логарифмов:

Так как – постоянный множитель, то – постоянный множитель, то

или

(3)

Пример 1. Найти производную функции

Решение. Применяя правило дифференцирования дроби (частного), а затем формулу (3), получим

Пример 2. Найти производную функции

Решение. Используя свойства логарифмов, данную функцию можно записать проще:

Это сложная логарифмическая функция. Применяя правило о том, что постоянный множитель можно выносить за знак производной, а затем формулу (2) при

получаем

Нет времени вникать в решение? Можно заказать работу!

Общая формула производной логарифма

Производная логарифма x по основанию a равняется числу 1, разделенному на произведение натурального логарифма a и числа x.

Случай отрицательных значений y

Теперь рассмотрим случай, когда переменная может принимать как положительные, так и отрицательные значения. В этом случае возьмем логарифм от модуля и найдем его производную:
.
Отсюда
(3) .
То есть, в общем случае, нужно найти производную от логарифма модуля функции .

Сравнивая (2) и (3) мы имеем:
.
То есть формальный результат вычисления логарифмической производной не зависит от того, взяли мы по модулю или нет. Поэтому, при вычислении логарифмической производной, мы можем не беспокоится о том, какой знак имеет функция .

Прояснить такую ситуацию можно с помощью комплексных чисел. Пусть, при некоторых значениях x, отрицательна: . Если мы рассматриваем только действительные числа, то функция не определена. Однако, если ввести в рассмотрение комплексные числа, то получим следующее:
.
То есть функции и отличаются на комплексную постоянную :
.
Поскольку производная от постоянной равна нулю, то
.

Внутренняя и внешняя функции

Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.

И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция – это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.

Вот в этом примере: (y=tg⁡(log_2⁡x )), функция (log_2⁡x) – внутренняя, а – внешняя.

А в этом: (y=cos⁡{(x^3+2x+1)}), (x^3+2x+1) – внутренняя, а – внешняя.

Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось – будем находить производные сложных функций:

Заполни пропуски в таблице:

Понятие производной сложной функции

Пусть y сложная функция x, т.е. y = f(u), u = g(x), или

Если g(x) и f(u) – дифференцируемые функции своих аргументов соответственно в точках x и u = g(x), то сложная функция также дифференцируема в точке x и находится по формуле

Типичная ошибка при решении задач на производные – машинальное перенесение правил дифференцирования простых функций на сложные функции. Будем учиться избегать этой ошибки.

Посмотрите на формулу 9 в таблице производных. Исходная функция является функцией от функции, причём аргумент x является аргументом лишь второй функции, а вторая функция является аргументом первой функции, или, согласно более строгому определению – промежуточным аргументом по независимой переменной x.

А теперь посмотрите на картинку ниже, которая иллюстрирует решение задач на сложные производные по аналогии с простым примером из кулинарии – приготовлении запечёных яблок, фаршированных ягодами.

Итак, “яблоко” – это функция, аргументом которой является промежуточный аргумент, а промежуточный аргумент по независимой переменной x, в свою очередь, является “фаршем” (ягодами). Представим себе, что решая задачи на производные сложной функции, сначала помещаем яблоко с фаршем в особую (физико-математическую) духовку и устанавливаем режим 1. При таком режиме духовка воздействует только на “яблоко”, поскольку нужно, допустим, больше пропечь яблоко, а фарш из ягод оставить более сочным, то есть обрабатывать в другом режиме. Итак, в при режиме 1 обрабатывается яблоко, а фарш остаётся незатронутым, или, ближе к нашим задачам, находим производную функции лишь от промежуточного аргумента, то есть, “яблока”. Затем в духовке устанавливается режим 2, который воздействует только на фарш, иначе говоря, записываем производную функции, являющейся промежуточным аргументом по независимой переменной x. И, в конце концов, записываем произведение производной “яблока” и производной “фарша”. Можно подавать!

Пример 1.Найти производную функции

Сначала определим, где здесь “яблоко”, то есть функция по промежуточному аргументу u, а где “фарш”, то есть промежуточный аргумент u по независимой переменной x. Определяем: возведение в степень – это функция по промежуточному аргументу, то есть “яблоко”, а выражение в скобках (разность двух тригонометрических функций) – это промежуточный аргумент, то есть “фарш”.

Тогда

Далее по таблице производных (производная суммы или разности, производные синуса и косинуса) находим:

Требуемая в условии задачи производная (готовое “фаршированое яблоко”):

Нахождение производной сложной логарифмической функции имеет свои особенности, поэтому у нас есть и урок “Производная логарифмической функции”.

Пример 2.Найти производную функции

Неправильное решение:вычислять натуральный логарифм каждого слагаемого в скобках и искать сумму производных:

Правильное решение:опять определяем, где “яблоко”, а где “фарш”. Здесь натуральный логарифм от выражения в скобках – это “яблоко”, то есть функция по промежуточному аргументу u, а выражение в скобках – “фарш”, то есть промежуточный аргумент u по независимой переменной x.

Тогда (применяя формулу 14 из таблицы производных)

Во многих реальных задачах выражение с логарифмом бывает несколько сложнее, поэтому и есть урок “Производная логарифмической функции”.

Пример 3.Найти производную функции

Неправильное решение:

Правильное решение.В очередной раз определяем, где “яблоко”, а где “фарш”. Здесь косинус от выражения в скобках (формула 7 в таблице производных)- это “яблоко”, оно готовится в режиме 1, воздействующем только на него, а выражение в скобках (производная степени – номер 3 в таблице производных) – это “фарш”, он готовится при режиме 2, воздействующей только на него. И как всегда соединяем две производные знаком произведения. Результат:

Производная сложной логарифмической функции – частое задание на контрольных работах, поэтому настоятельно рекомендуем посетить урок “Производная логарифмической функции”.

Первые примеры были на сложные функции, в которых промежуточный аргумент по независимой переменной был простой функцией. Но в практических заданиях нередко требуется найти производную сложной функции, где промежуточный аргумент или сам является сложной функцией или содержит такую функцию. Что делать в таких случаях? Находить производные таких функций по таблицам и правилам дифференцирования. Когда найдена производная промежуточного аргумента, она просто подставляется в нужное место формулы. Ниже – два примера, как это делается.

Кроме того, полезно знать следующее. Если сложная функция может быть представлена в виде цепочки из трёх функций

,

то её производную следует находить как произведение производных каждой из этих функций:

.

Для решения многих ваших домашних заданий может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Нет времени вникать в решение? Можно заказать работу!
К началу страницы
Пройти тест по теме Производная, дифференциал и их применение

Пример 4.Найти производную функции

Применяем правило дифференцирования сложной функции, не забывая, что в полученном произведении производных промежуточный аргумент по независимой переменной x не меняется:

Готовим второй сомножитель произведения и применяем правило дифференцирования суммы:

Второе слагаемое – корень, поэтому

Таким образом получили, что промежуточный аргумент, являющийся суммой, в качестве одного из слагаемых содержит сложную функцию: возведение в степень – сложная функция, а то, что возводится в степень – промежуточный аргумент по независимой переменной x.

Поэтому вновь применим правило дифференцирования сложной функции:

Степень первого сомножителя преобразуем в корень, а дифференцируя второй сомножитель, не забываем, что производная константы равна нулю:

Теперь можем найти производную промежуточного аргумента, нужного для вычисления требуемой в условии задачи производной сложной функции y:

Тогда

Пример 5.Найти производную функции

Сначала воспользуемся правилом дифференцирования суммы:

Получили сумму производных двух сложных функций. Находим первую из них:

Здесь возведение синуса в степень – сложная функция, а сам синус – промежуточный аргумент по независимой переменной x. Поэтому воспользуемся правилом дифференцирования сложной функции, попутно вынося множитель за скобки:

Теперь находим второе слагаемое из образующих производную функции y:

Здесь возведение косинуса в степень – сложная функция f[g(x)], а сам косинус – промежуточный аргумент по независимой переменной x. Снова воспользуемся правилом дифференцирования сложной функции:

Результат – требуемая производная:

Правила нахождения производных

Пример 1. Найти производную функции y=cos4x.
Решение.
Внешней функцией здесь служит степенная функция: cos(x) возводится в четвертую степень. Дифференцируя эту степенную функцию по промежуточному аргументу cos(x), получим
(cos4x)′cos x = 4cos4-1x = 4cos3x
но промежуточный аргумент cos(x) – функция независимой переменной хcos(x) по независимой переменной х . Таким образом, получим
y′x = (cos4x)′cos x·(cosx)′x = 4·cos3x·(-sin x) = -4·cos3x·sin x
При дифференцировании функций нет необходимости в таких подробных записях. Результат следует писать сразу, представляя последовательно в уме промежуточные аргументы.

Пример 2. Найти производную функции
.

.
В некоторых случаях, если, например, нужно найти производную функции y = (u(x))v(x), или функции, заданной в виде произведения большого числа сомножителей, используется так называемый способ логарифмического дифференцирования.

Пример 3. Найти производную функции
.
Решение.
Применим метод логарифмического дифференцирования. Рассмотрим функцию

Учитывая, что , будем иметь

Но , откуда
, откуда
.

Пример 4. Найти производную функции y=xex
Решение.
.

Некоторые свойства и практические примеры

  1. Приведем правило для нахождения производной обратной функции.

Пусть дана функция

y=f(x)y=f(x)

, в которой переменная x является аргументом. Полагая теперь аргументом переменную y, получим функцию в виде

x=g(y)x=g(y)

.

Очевидно, что

f(g(y))=yf(g(y))=y

или

f(g(x))=xf(g(x))=x

. Такую функцию

g(x)g(x)

называют обратной для

f(x)f(x)

. Производную обратной функции можно найти по правилу:

yx=dydx=1dxdy=1xyy_x’=dfrac {dy}{dx}=dfrac {1}{dfrac {dx}{dy}}=dfrac {1}{x_y’}

Пример 1

Используя правило для обратной функции найти производную функции

f(x)=lnx.f(x)= ln{x}.

Решение

Заметим, что обратной для логарифмической функции

lnxln{x}

является показательная функция

exe^x

. Действительно:

f(g(x))=lnex=xf(g(x)) = ln {e^x} = x

Воспользуемся далее формулой для производной экспоненты:

(ex)=ex(e^{x})^{‘}=e^{x}

Получаем:

yx=(lnx)=1(ey)y=1ey=1elnx=1xy_x’ = (ln {x})’ = dfrac {1}{(e^{y})^{‘}_y}= dfrac {1}{e^y}= dfrac {1}{e^{ln x}}= dfrac {1}{x}

Как и следовало ожидать, результат совпадает с полученным ранее.

  1. Угол наклона
    αalpha

    касательной к графику функции

    y=lnxy= ln {x}

    в точке

    x=x0x=x_0

    определяется соотношением:

tgα=y(x0)=1x0tg alpha =y^{‘} (x_0 )= dfrac {1}{x_0}

Здесь угол

αalpha

это угол между касательной и осью

OxOx

отсчитываемый от положительного направления

OxOx

против часовой стрелки.

Производная функции

f(x)=lnxf(x)= ln {x}

в точке

x0=1x_0=1

равна

11

:

f(x0)=(lnx)x0=1=11=1f’ (x_0 ) = (ln {x})_{x_0=1}^{‘}=dfrac {1}{1}=1

Это означает, что касательная к графику в точке

M(10),(x0=1,y0=ln1=0)M(1;0), (x_0=1, y_0=ln {1} = 0)

составляют с осью

OxOx

угол

45°(tg45°=1)45° (tg {45°}=1)

  1. Производная сложной функции
    y=lng(x)y=ln {g(x)}

    согласно правил дифференцирования, равна:

y=g(x)1g(x)y’=g'(x) dfrac {1}{g(x)}

  1. Производная сложной функции
    y=u(v)y=u(v)

    , где

    v=lnxv= ln {x}

    равна:

y=uvv=uv1xy’=u’_v cdot v’=u’_v cdot dfrac {1}{x}

Пример 2

Найти производную функции

f(x)=ln(x2+2x)f(x)=ln {(x^2+2x)}

Решение

f(x)=(ln(x2+2x))=(x2+2x)1x2+2x=2x+2x2+2xf'(x)=(ln {(x^2+2x)})’=(x^2+2x)’ cdot dfrac {1}{x^2+2x}=dfrac {2x+2}{x^2+2x}

Пример 3

Найти производную функции

f(x)=sin(ln2x)f(x)= sin {(ln {2x})}

Решение

Полагаем

ln2x=vln {2x}=v

Тогда:

f(x)=(sinv)vv=cosv(ln2x)=cos(ln2x)(2x)12x=cos(ln2x)xf'(x)=(sin {v})’_v cdot v’ = cos {v} cdot (ln {2x})’ =cos{(ln {2x})} cdot (2x)’ cdot dfrac {1} {2x} = dfrac {cos(ln{2x})} {x}

Сложные производные

После предварительной артподготовки будут менее страшны примеры, с 3-4-5 вложениями функций. Возможно, следующие два примера покажутся некоторым сложными, но если их понять (кто-то и помучается), то почти всё остальное в дифференциальном исчислении будет казаться детской шуткой.

Пример 2

Найти производную функции

Как уже отмечалось, при нахождении производной сложной функции, прежде всего, необходимо правильно РАЗОБРАТЬСЯ во вложениях. В тех случаях, когда есть сомнения, напоминаю полезный приём: берем подопытное значение «икс», например, и пробуем (мысленно или на черновике) подставить данное значение в «страшное выражение».

1) Сначала нам нужно вычислить выражение , значит, сумма , значит, сумма – самое глубокое вложение.

2) Затем необходимо вычислить логарифм:

3) Далее косинус:

4) Потом косинус возвести в куб:

5) На пятом шагу разность:

6) И, наконец, самая внешняя функция – это квадратный корень:

Формула дифференцирования сложной функции применятся в обратном порядке, от самой внешней функции, до самой внутренней. Решаем:

Вроде без ошибок….

(1) Берем производную от квадратного корня.

(2) Берем производную от разности, используя правило

(3) Производная тройки равна нулю. Во втором слагаемом берем производную от степени (куба).

(4) Берем производную от косинуса.

(5) Берем производную от логарифма.

(6) И, наконец, берем производную от самого глубокого вложения .

Может показаться слишком трудно, но это еще не самый зверский пример. Возьмите, например, сборник Кузнецова и вы оцените всю прелесть и простоту разобранной производной. Я заметил, что похожую штуку любят давать на экзамене, чтобы проверить, понимает студент, как находить производную сложной функции, или не понимает.

Следующий пример для самостоятельного решения.

Пример 3

Найти производную функции

Подсказка: Сначала применяем правила линейности и правило дифференцирования произведения

Полное решение и ответ в конце урока.

Настало время перейти к чему-нибудь более компактному и симпатичному.
Не редка ситуация, когда в примере дано произведение не двух, а трёх функций. Как найти производную от произведения трёх множителей?

Пример 4

Найти производную функции

Сначала смотрим, а нельзя ли произведение трех функций превратить в произведение двух функций? Например, если бы у нас в произведении было два многочлена, то можно было бы раскрыть скобки. Но в рассматриваемом примере все функции разные: степень, экспонента и логарифм.

В таких случаях необходимо последовательно применить правило дифференцирования произведения два раза

Фокус состоит в том, что за «у» мы обозначим произведение двух функций: , а за «вэ» – логарифм: , а за «вэ» – логарифм: . Почему так можно сделать? А разве – это не произведение двух множителей и правило не работает?! Ничего сложного нет:

Теперь осталось второй раз применить правило к скобке к скобке :

Можно еще поизвращаться и вынести что-нибудь за скобки, но в данном случае ответ лучше оставить именно в таком виде – легче будет проверять.

Готово.

Рассмотренный пример можно решить вторым способом:

Оба способа решения абсолютно равноценны.

Пример 5

Найти производную функции

Это пример для самостоятельного решения, в образце он решен первым способом.

Рассмотрим аналогичные примеры с дробями.

Пример 6

Найти производную функции

Здесь можно пойти несколькими путями:


или так:

или так:

Но решение запишется более компактно, если в первую очередь использовать правило дифференцирования частного , приняв за , приняв за весь числитель:

В принципе, пример решён, и если его оставить в таком виде, то это не будет ошибкой. Но при наличии времени всегда желательно проверить на черновике, а нельзя ли ответ упростить? Приведём выражение числителя к общему знаменателю и избавимся от трёхэтажности дроби:

Минус дополнительных упрощений состоит в том, что есть риск допустить ошибку уже не при нахождении производной, а при банальных школьных преобразованиях. С другой стороны, преподаватели нередко бракуют задание и просят «довести до ума» производную.

Более простой пример для самостоятельного решения:

Пример 7

Найти производную функции

Продолжаем осваивать приёмы нахождения производной, и сейчас мы рассмотрим типовой случай, когда для дифференцирования предложен «страшный» логарифм

Пример 8

Найти производную функции

Тут можно пойти длинным путём, используя правило дифференцирования сложной функции:

Но первый же шаг сразу повергает в уныние – предстоит взять неприятную производную от дробной степени , а потом ещё и от дроби , а потом ещё и от дроби .

Поэтому перед тем как брать производную от «навороченного» логарифма, его предварительно упрощают, используя известные школьные свойства:




! Если под рукой есть тетрадь с практикой, перепишите эти формулы прямо туда. Если тетради нет, перерисуйте их на листочек, поскольку оставшиеся примеры урока буду вращаться вокруг этих формул.

Само решение можно оформить примерно так:

Преобразуем функцию:

Находим производную:

Предварительное преобразование самой функции значительно упростило решение. Таким образом, когда для дифференцирования предложен подобный логарифм, то его всегда целесообразно «развалить».

А сейчас пара несложных примеров для самостоятельного решения:

Пример 9

Найти производную функции

Пример 10

Найти производную функции

Все преобразования и ответы в конце урока.

Синтаксис описания формул

В описании функции допускается использование одной переменной (обозначается как x), скобок, числа пи (pi), экспоненты (e), математических операций: + — сложение, — вычитание, * — умножение, / — деление, ^ — возведение в степень.
Допускаются также следующие функции: sqrt — квадратный корень, exp — e в указанной степени, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — натуральный логарифм (по основанию e), sin — синус, cos — косинус, tg — тангенс, ctg — котангенс, sec — секанс, cosec — косеканс, arcsin — арксинус, arccos — арккосинус, arctg — арктангенс, arcctg — арккотангенс, arcsec — арксеканс, arccosec — арккосеканс, versin — версинус, vercos — коверсинус, haversin — гаверсинус, exsec— экссеканс, excsc — экскосеканс, sh — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, abs — абсолютное значение (модуль), sgn — сигнум (знак), logP — логарифм по основанию P, например log7(x) — логарифм по основанию 7, rootP — корень степени P, например root3(x) — кубический корень.

 

Производная натурального логарифма

Производная от натурального логарифма числа x равняется единице, разделенной на x.

Данная формула получена следующим образом:

Сокращение ln e в данном случае возможно благодаря свойству логарифма:

Производная натурального логарифма сложной функции u = u (x):

Прикладное использование производной

Вычисление производной первого и второго порядка используется во многих прикладных задачах. Рассмотрим наиболее распространенные из них.

  1. Нахождение экстремумов функции одной переменной осуществляют приравниванием к нулю производной: f'(x)=0. Этот этап является основным для построения графика функции методом дифференциального исчисления.
  2. Значение производной в точке x0 позволяет находить уравнение касательной к графику функции.
  3. Отношение производных позволяет вычислять пределы по правилу Лопиталя.
  4. В математической статистике плотность распределения f(x) определяют как производную от функции распределения F(x).
  5. При отыскании частного решения линейного дифференциального уравнения требуется вычислять производную в точке.
  6. В методе Ньютона с помощью производной отделяют корни нелинейных уравнений.

Таблица производных

Производная степенной функции:

Производная показательной функции:

Производная экспонециальной функции:

Производная логарифмической функции:

Производные тригонометрических функций:
,
,
,

Производные обратных тригонометрических функций:
,
,
,

Производные гиперболических функций:



Некоторые интересные факты о числе е

С этим числом связаны фамилии таких ученых, как Непер, Отред, Гюйгенс, Бернулли, Лейбниц, Ньютон, Эйлер, и другие. Последний собственно и ввел обозначение е для этого числа, а также нашел первые 18 знаков, используя для расчета открытый им ряд е = 1 + 1/1! + 2/2! + 3/3! …

Число e встречается в самых неожиданных местах. Например, оно входит в уравнение цепной линии, которое описывает провис каната под действием собственного веса, когда его концы закреплены на опорах.

Что такое логарифмическое дифференцирование?

Если функция дана в виде

,

то перед тем, как находить её производную, часто бывает выгодно прологарифмировать эту функцию.

Это прежде всего случаи, когда требуется найти производную произведения или частного функций, а также степенной функции, когда основание и степень – функции.

На основании свойств сложных функций доказано, что производная функции, вид которой приведён выше, может быть найдена по формуле

Пример 3. Найти производную функции

Решение. Логарифмируем обе части равенства и находим:

Решение. Окончательно находим производную данной функции:

Пример 4. Найти производную функции

.

Решение. Логарифмируем обе части равенства:

Дифференцируем:

Выражаем и находим производную данной функции:

Производная экспоненты

Экспонентой называется показательная функция, в качестве основания которой находится число е. Она обычно отображается в виде F (x) = ex, где показатель степени x является переменной величиной. Данная функция обладает полной дифференцируемостью во всем диапазоне вещественных чисел. С ростом x она постоянно возрастает и всегда больше нуля. Обратная к ней функция — логарифм.

Известный математик Тейлор сумел разложить эту функцию в ряд, названный его именем ex = 1 + x/1! + x 2 /2! + x 3 /3! + … в диапазоне x от — ∞ до + ∞.

Закон, базирующийся на этой функции, называется экспоненциальным. Он описывает:

  • возрастание сложных банковских процентов;
  • увеличение популяции животных и населения планеты;
  • время окоченения трупа и многое другое.

Повторим еще раз замечательное свойство данной зависимости — значение ее производной в любой точке всегда равно значению функции в этой точке, то есть (ex)’ = ex .

Приведем производные для наиболее общих случаев экспоненты:

  • (eax)’ = a ∙ eax
  • (ef (x))’ = f'(x) ∙ ef (x).

Используя данные зависимости, несложно найти производные для других частных видов этой функции.

Источники


  • https://profmeter.com.ua/communication/learning/course/course17/lesson251/
  • https://LivePosts.ru/articles/education-articles/matematika/udivitelnaya-osobennost-proizvodnoj-e-v-stepeni-h
  • https://MicroExcel.ru/proizvodnye-logarifmov/
  • https://function-x.ru/proizvodnaya_logarifmicheskoi_funkcii.html
  • https://1cov-edu.ru/mat_analiz/proizvodnaya/nayti/logarifmicheskaya/
  • http://cos-cos.ru/math/254/
  • https://function-x.ru/derivative2.html
  • https://math.semestr.ru/math/diff.php
  • https://studwork.org/spravochnik/matematika/proizvodnye/proizvodnaya-naturalnogo-logarifma
  • http://www.mathprofi.ru/slozhnye_proizvodnye_logarifmicheskaja_proizvodnaja.html
  • https://planetcalc.ru/675/?thanks=1
  • https://planetcalc.ru/675/

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: