Натуральный логарифм: основание, свойства, формулы, функция, график

Определение натурального логарифма

Когда e y = x,

Натуральный логарифм (ln) числа x выглядит следующим образом:
ln(x) = loge(x) = y

Число e означает рост

Число e означает непрерывный рост. Как мы видели в прошлом примере, ex позволяет нам увязать процент и время: 3 года при росте 100% есть то же самое, что и 1 год при 300%, при условии “сложных процентов”.

Можно подставлять любые значения процента и времени (50% на протяжении 4 лет), но лучше задать процент как 100% для удобства (получается 100% на протяжении 2 лет). За счёт перехода к 100% мы можем сфокусироваться исключительно на компоненте времени:

ex = eпроцент * время = e1.0 * время = eвремя

Очевидно, что ex означает:

  • насколько вырастет мой вклад через x единиц времени (при условии 100%-го непрерывного роста).
  • например, через 3 промежутка времени я получу в e3 = 20.08 раз больше “штуковин”.

ex — это масштабирующий коэффициент, показывающий, до какого уровня мы вырастем за x отрезков времени.

Формула замены основания логарифма

Иметь дело с натуральным логарифмом намного проще, чем с логарифмом, имеющим произвольное основание. Именно поэтому попробуем научиться приводить любой логарифм к натуральному, либо выражать его по произвольному основанию через натуральные логарифмы.

Начнем с логарифмического тождества:

.

Тогда любое число, либо переменную у можно представить в виде:

,

где х любое число (положительное согласно свойствам логарифма).

Данное выражение можно прологарифмировать с обеих сторон. Произведем это при помощи произвольного основания z:

.

Воспользуемся свойством (только вместо с у нас выражение):

Отсюда получаем универсальную формулу:

.

В частности, если z=e, то тогда:

.

Нам удалось представить логарифм по произвольному основанию через отношение двух натуральных логарифмов.

Решаем задачи

Для того чтобы лучше ориентироваться в натуральных логарифмах, рассмотрим примеры нескольких задач.

Задача 1. Необходимо решить уравнение ln x = 3.

Решение: Используя определение логарифма: если , то , получаем:

.

Задача 2. Решите уравнение (5 + 3 * ln (x 3)) = 3.

Решение: Используя определение логарифма: если , то , получаем:

.

Тогда:

.

.

Еще раз применим определение логарифма:

.

Таким образом:

.

Можно приближенно вычислить ответ, а можно оставить его и в таком виде.

Задача 3. Решите уравнение .

Решение: Произведем подстановку: t = ln x. Тогда уравнение примет следующий вид:

.

Перед нами квадратное уравнение. Найдем его дискриминант:

.

Первый корень уравнения:

.

Второй корень уравнения:

.

Вспоминая о том, что мы производили подстановку t = ln x, получаем:

.

Используя определение логарифма: если , то , получаем оба корня:

.

Вспомним, что область определения: . Оба корня больше нуля, так что оба решения верны и подходят.

Внимание! Когда в логарифмических уравнениях у вас получается два корня или больше, не забывайте про область определения. Аргумент, стоящий под логарифмом никогда не может быть меньше нуля. Если одно из решений делает выражение под логарифмом меньше либо равным нулю такой корень вам не подходит, исключите его.

Связь с экспоненциальной функцией

Функция логарифма ln(x) является обратной к экспоненциальной функции ex.

Для х > 0,

f (f -1(x)) = eln(x) = x

или

f -1(f (x)) = ln(ex) = x

График натурального логарифма ln x


График функции y = ln x.

График натурального логарифма (функции y = ln x) получается из графика экспоненты зеркальным отражением относительно прямой y = x.

Натуральный логарифм определен при положительных значениях переменной x. Он монотонно возрастает на своей области определения.

При x → 0 пределом натурального логарифма является минус бесконечность ( – ∞ ).

При x → + ∞ пределом натурального логарифма является плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция xa с положительным показателем степени a растет быстрее логарифма.

Область определения, множество значений, экстремумы, возрастание, убывание

Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные свойства натурального логарифма представлены в таблице.

Область определения 0 < x + ∞
Область значений – ∞ < y < + ∞
Монотонность монотонно возрастает
Нули, y = 0 x = 1
Точки пересечения с осью ординат, x = 0 нет
+ ∞
– ∞

Свойства натурального логарифма

Свойств Формула Пример
Логарифм умножения ln(x / y) = ln(x)ln(y)‘ data-original-value=’ln(x / y) = ln(x)ln(y)‘ data-cell-type=”text” data-db-index=”3″ data-y=”3″ data-x=”1″ data-cell-id=”B3″>ln(x / y) = ln(x)ln(y) Логарифм степени ‘ data-original-value=’‘ data-cell-type=”text” data-db-index=”5″ data-y=”5″ data-x=”1″ data-cell-id=”B5″> ∫ ln(x)dx = x ∙ (ln(x) – 1) + C‘ data-original-value=’∫ ln(x)dx = x ∙ (ln(x) – 1) + C‘ data-cell-type=”text” data-db-index=”7″ data-y=”7″ data-x=”1″ data-cell-id=”B7″ data-rowspan=”1″ data-colspan=”2″>∫ ln(x)dx = x ∙ (ln(x) – 1) + C
Логарифм отрицательного числа ln(0) не определен’ data-original-value=’ln(0) не определен’ data-cell-type=”text” data-db-index=”9″ data-y=”9″ data-x=”1″ data-cell-id=”B9″ data-rowspan=”1″ data-colspan=”2″>ln(0) не определен
Логарифм числа 1 log z = ln(r) + i(θ+2nπ) = ln(√(x2+y2)) + i·arctan(y/x)),
для комплексного числа z = re = x + iy‘ data-original-value=’log z = ln(r) + i(θ+2nπ) = ln(√(x2+y2)) + i·arctan(y/x)),
для комплексного числа z = re = x + iy‘ data-cell-type=”text” data-db-index=”11″ data-y=”11″ data-x=”1″ data-cell-id=”B11″ data-rowspan=”1″ data-colspan=”2″>log z = ln(r) + i(θ+2nπ) = ln(√(x2+y2)) + i·arctan(y/x)),
для комплексного числа z = re = x + iy
Логарифм бесконечности ln(-1) = iπ‘ data-original-value=’ln(-1) = iπ‘ data-cell-type=”text” data-db-index=”13″ data-y=”13″ data-x=”1″ data-cell-id=”B13″ data-rowspan=”1″ data-colspan=”2″>ln(-1) = iπ
 

Возведение в степень и логарифм

Возведение в степень представляет собой операцию повторяющегося умножения числа на само себя. Если нам требуется умножить тройку на себя 7 раз, то мы записываем это как 3 × 3 × 3 × 3 × 3 × 3 × 3. Компактная запись такого выражения выглядит как 37 — это и есть возведение в степень.

Деление — операция, обратная умножению. Если верно выражение A × B = C, то и выражение A = C / B так же верно. Такая взаимосвязь часто используется при решении линейных уравнений вида Ax + B = 0, где мы легко можем выразить неизвестное при помощи операции деления. Но что делать, если уравнение не линейное, а показательное? Например, как решить уравнение вида Ax = B. Икс — показатель степени и он нам неизвестен. Возникает задача, в какую степень требуется возвести A, чтобы получить B?

Для наглядности попробуем решить не абстрактный буквенный пример Ax = B, а числовой. Пусть есть элементарное показательное уравнение 2x = 4. В какую степень нужно возвести двойку, чтобы получить 4? Очевидно, что во вторую. Более сложное уравнение 3x = 243. Для решения такого уравнения можно постепенно умножать тройку на саму себя, пока не получим число 243. Легко подсчитать, что 3 × 3 × 3 = 27, но этого мало. Умножим еще на 3 и получим 81. Умножив еще раз мы получим искомое 243. Мы умножили 3 на себя 5 раз, следовательно, x = 5.

Ну а что делать с уравнением 2x = 5? Небольшое изменение, и элементарное уравнение превращается в практически не разрешимое вручную. Очевидно, что ответ больше 2 и меньше 3, но его точное значение мы можем узнать лишь с заданной точностью. Вот тут нам и пригодятся логарифмы. Для решения уравнения следует записать x = log2 5. Все, это и есть ответ, которого достаточно любому математику.

Интегралы от экспоненты, умноженной на многочлен

Общее правило: за всегда обозначается многочлен

Пример 5

Найти неопределенный интеграл.

Решение:

Используя знакомый алгоритм, интегрируем по частям:



Если возникли трудности с интегралом , то следует вернуться к статье Метод замены переменной в неопределенном интеграле.

Единственное, что еще можно сделать, это «причесать» ответ:

Но если Ваша техника вычислений не очень хороша, то самый выгодный вариант оставить ответом или даже или даже

То есть, пример считается решенным, когда взят последний интеграл. Ошибкой не будет, другое дело, что преподаватель может попросить упростить ответ.

Пример 6

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Данный интеграл дважды интегрируется по частям. Особое внимание следует обратить на знаки – здесь легко в них запутаться, также помним, что – сложная функция.

Больше про экспоненту рассказывать особо нечего. Могу только добавить, что экспонента и натуральный логарифм взаимно-обратные функции, это я к теме занимательных графиков высшей математики =) Стоп-стоп, не волнуемся, лектор трезв.

Интегралы от тригонометрических функций, умноженных на многочлен

Общее правило: за всегда обозначается многочлен

Пример 7

Найти неопределенный интеграл.

Интегрируем по частям:

Хммм, …и комментировать нечего.

Пример 8

Найти неопределенный интеграл

Это пример для самостоятельного решения

Пример 9

Найти неопределенный интеграл

Еще один пример с дробью. Как и в двух предыдущих примерах за обозначается многочлен.

Интегрируем по частям:

Если возникли трудности или недопонимание с нахождением интеграла , то рекомендую посетить урок Интегралы от тригонометрических функций.

Пример 10

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Подсказка: перед использованием метода интегрирования по частям следует применить некоторую тригонометрическую формулу, которая превращает произведение двух тригонометрических функций в одну функцию. Формулу также можно использовать и в ходе применения метода интегрирования по частям, кому как удобнее.

Вот, пожалуй, и всё в данном параграфе. Почему-то вспомнилась строчка из гимна физмата «А синуса график волна за волной по оси абсцисс пробегает»….

Логарифмическое умножение — просто умора

Сколько времени займёт четырёхкратный рост? Конечно, можно просто взять ln(4). Но это слишком просто, мы пойдём другим путём.

Можно представить четырёхкратный рост как удвоение (требующее ln(2) единиц времени) и затем снова удвоение (требующее ещё ln(2) единиц времени):

  • Время на 4х рост = ln(4) = Время на удвоится и затем ещё раз удвоится = ln(2) + ln(2)

Интересно. Любой показатель роста, скажем, 20, можно рассматривать как удвоение сразу после 10-кратного увеличения. Или роста в 4 раза, и затем в 5 раз. Либо же утроение и затем увеличение в 6.666 раз. Видите закономерность?

  • ln(a*b) = ln(a) + ln(b)

Логарифм от A, умноженного на B, есть log(A) + log(B). Это отношение сразу обретает смысл, если оперировать в терминах роста.

Если вас интересует 30-кратный рост, вы можете подождать ln(30) за один присест, либо же подождать ln(3) Для утроения, и затем ещё ln(10) для удесятирения. Конечный результат тот же самый, так что конечно время должно оставаться постоянным (и остаётся).

Что на счёт деления? В частности, ln(5/3) означает: сколько времени понадобится для того, чтобы вырасти в 5 раз, и затем получить 1/3 от этого?

Отлично, рост в 5 раз есть ln(5). Рост в 1/3 раза займёт -ln(3) единиц времени. Итак,

  • ln(5/3) = ln(5) – ln(3)

Сие означает: дайте вырасти в 5 раз, и затем “вернитесь во времени” к той отметке, где останется всего треть от того количества, так что у вас получится 5/3 рост. В общем получается

  • ln(a/b) = ln(a) – ln(b)

Я надеюсь, что странная арифметика логарифмов начинает обретать для вас смысл: умножение показателей роста становится сложением единиц времени роста, а деление превращается в вычитание единиц времени. Не надо запоминать правила, попробуйте осознать их.

Этот нестандартный логарифмический счёт

Вы проходили логарифмы — это странные существа. Как им удалось превратить умножение в сложение? А деление в вычитание? Давайте посмотрим.

Чему равняется ln(1)? Интуитивно понятно, что вопрос стоит так: сколько нужно ждать, чтобы получить в 1 раз больше того, что у меня есть?

Ноль. Нуль. Нисколько. У вас уже это есть единожды. Не требуется нисколько времени, чтобы от уровня 1 дорости до уровня 1.

  • ln(1) = 0

Хорошо, что насчёт дробного значения? Через сколько у нас останется 1/2 от имеющегося количества? Мы знаем, что при стопроцентном непрерывном росте ln(2) означает время, необходимое для удвоения. Если мы обратим время вспять (т.е. подождём отрицательное количество времени), то получим половину от того, что имеем.

  • ln(1/2) = —ln(2) = —0.693

Логично, правда? Если мы вернёмся назад (время вспять) на 0.693 секунды, то обнаружим половину имеющегося количества. Вообще можно переворачивать дробь и брать отрицательное значение: ln(1/3) = —ln(3) = —1.09. Это означает, что, если мы вернёмся в прошлое на 1.09 отрезков времени, то обнаружим только треть от нынешнего числа.

Ладно, а как насчёт логарифма отрицательного числа? Сколько времени нужно, чтобы “вырастить” колонию бактерий от 1 до —3?

Это невозможно! Нельзя получить отрицательное число бактерий, не так ли? Вы можете получить максимум (эээ… минимум) нуль, но вам никак не получить отрицательное число этих маленьких тварей. В отрицательном числе бактерий просто нет смысла.

  • ln(отрицательное число) = неопределено

“Неопределено” означает, что нет такого промежутка времени, который надо было бы прождать, чтобы получить отрицательное значение.

Вычисление необходимой ставки

В примере выше мы вычислили прибыль, но что делать, если вы инвестор и хотите получить от вклада заданный доход? Пусть у вас есть $1 000 и вы хотите, чтобы через год на банковском депозите было уже $1 500. Какую процентную ставку должен предлагать банк для осуществления этого инвестиционного плана? Составим уравнение:

  • 1000ex = 1500
  • ex = 1,5

Требуется найти икс, и нам на помощь спешит натуральный логарифм. Решением данного уравнения будет x = ln1,5, но если для математика такого ответа достаточно, то инвестору придется подсчитать это значение на нашем калькуляторе. Для этого введите значение в ячейку и сделайте один клик мышью. В результате получаем 0,40. Увы, никакой банк не предложит вам депозит под 40% годовых. Но зная необходимый процент вы можете определить произведение годовой ставки на количество лет. Зная, что вам требуется получить прирост в размере 40%, вы можете выбрать несколько вариаций и положить деньги в банк:

  • под 10% годовых на 4 года;
  • под 8% годовых на 5 лет;
  • под 13% годовых на 3 года.

Как видите, экспонента и натуральный логарифм необходимы не только на занятиях по алгебре.

Наш онлайн-калькулятор — это быстрая и точная программа для вычисления значений натурального логарифма. Калькулятор представляет собой сборник из четырех программ для вычисления логарифмов разного типа. Для подсчетов достаточно выбрать в меню натуральный логарифм, ввести значение в ячейки и получить результат. Программа вычисляет как само значение логарифма lnx, так и возвращает величину x при известном значении логарифма.

Комплексные логарифмы

Экспоненциальная функция может быть расширена до функции, которая даёт комплексное число вида ex для любого произвольного комплексного числа x, при этом используется бесконечный ряд с комплексным x. Эта показательная функция может быть инвертирована с образованием комплексного логарифма, который будет обладать большей частью свойств обычных логарифмов. Есть, однако, две трудности: не существует x, для которого ex = 0, и оказывается, что e2πi = 1 = e0. Поскольку свойство мультипликативности действительно для комплексной экспоненциальной функции, то ez = ez+2nπi для всех комплексных z и целых n.

Логарифм не может быть определён на всей комплексной плоскости, и даже при этом он является многозначным — любой комплексный логарифм может быть заменён на «эквивалентный» логарифм, добавив любое целое число, кратное 2πi. Комплексный логарифм может быть однозначным только на срезе комплексной плоскости. Например, ln i = 1/2 πi или 5/2 πi или −3/2 πi, и т.д., и хотя i4 = 1, 4 log i может быть определена как 2πi, или 10πi или −6 πi, и так далее.

Соглашение об обозначениях

Обозначение «ln» всегда относится к натуральному логарифму. Обозначения «lg» и «log» зависят от контекста и традиций, описываемых ниже.

Русская и европейская система

Натуральный логарифм принято обозначать через «ln», логарифм по основанию 10 — через «lg», а прочие основания принято указывать явно в виде нижнего индекса при символе «log».

Во многих работах по дискретной математике, кибернетике, информатике логарифм по основанию 2 авторы обозначают просто как «log» или, реже, «lb», но эти соглашения не являются общепринятыми и требует разъяснения либо в списке использованных обозначений, либо (при отсутствии такого списка) сноской или комментарием при первом использовании.

Скобки вокруг аргумента логарифмов обычно опускают, кроме случаев, когда аргумент является сложным выражением и это может привести к ошибочному чтению формулы. При возведении логарифма в степень показатель приписывают непосредственно к знаку логарифма, например:

ln2 ln3 (4x5)= [ln([ln(4x5)]3)]2.

Т. е. в данном случае действуют обычные соглашения относительно записи элементарных функций.

Англо-американская система

Обозначение натурального логарифма, как , где  является аргументом, ввёл американский математик Ирвинг Стрингхем в 1893 году.

Математики, статистики и часть инженеров обычно используют для обозначения натурального логарифма либо «log», либо «ln», а для обозначения логарифма по основанию 10 — «log10».

Некоторые инженеры, биологи и другие специалисты всегда пишут «ln» (или изредка «log), когда они имеют в виду натуральный логарифм, а запись «log» у них означает «log10».

В теоретической информатике, теории информации и криптографии «log» обычно означает логарифм по основанию 2 «log2», хотя иногда вместо этого пишется lg или lb.

Происхождение термина натуральный логарифм

Сначала может показаться, что поскольку наша система счисления имеет основание 10, то это основание является более «натуральным», чем основание e. Но математически число 10 не является особо значимым. Его использование скорее связано с культурой, оно является общим для многих систем счисления, и связано это, вероятно, с числом пальцев у люде Некоторые культуры основывали свои системы счисления на других основаниях: 5, 8, 12, 20 и 60

loge является «натуральным» логарифмом, поскольку он возникает автоматически и появляется в математике очень часто. Например, рассмотрим проблему производной логарифмической функции:

Если основание b равно e, то производная равна просто 1/x, а при x = 1 эта производная равна 1. Другим обоснованием, по которому основание e логарифма является наиболее натуральным, является то, что он может быть довольно просто определён в терминах простого интеграла или ряда Тейлора, чего нельзя сказать о других логарифмах.

Дальнейшие обоснования натуральности не связаны со счислением. Так, например, есть несколько простых рядов с натуральными логарифмами. Пьетро Менголи и Николай Меркатор называли их логарифмус натуралис несколько десятилетий до тех пор, пока Ньютон и Лейбниц не разработали дифференциальное и интегральное исчисление.

Понятие натурального логарифма

Таким образом, логарифм log A B – это число, в которое требуется возвести A, чтобы получить B. Число A в данном случае называется основанием, которое может быть любым, однако на практике чаще всего встречаются логарифмы с основанием 10 и e. Первые соответственно называются десятичными, а вторые — натуральными. Несмотря на название, натуральный логарифм — техническая функция.

Экспонента (число е) — иррациональное число, приблизительно равное 2,718281828. Экспонента представляет собой базовое соотношение роста для любых растущих процессов. Число e – это предельная константа, ограничивающая процессы роста так же, как скорость света ограничивает передвижение объектов в пространстве. Именно операции с экспонентой дают возможность определить темпы роста в таких ситуациях, как вычисление прироста населения, процентов по банковскому депозиту или объема полураспада радиоактивного вещества. Так как любой процесс можно описать при помощи математических формул, любой рост можно выразить упрощенной формулой вида:

Рост = ex

Например, если мы положили $100 на банковский депозит поl 9% годовых сроком на 3 года, то прибыль будет рассчитываться как:

Конечный результат: 100e(0,09 × 3) = $130.

Это простая операция возведения числа е в степень. Если же нам требуется обратная операция, то на помощь придет натуральный логарифм. Рассмотрим пример с банковским депозитом.

Предел натурального log

Изучая график, возникает вопрос как ведет себя функция при y&lt,0.

Очевидно, что график функции стремится пересечь ось у, но не сможет этого сделать, поскольку натуральный логарифм при х&lt,0 не существует.

Внимание! При стремлении к нулю аргументу, функция y = ln x стремится к (минус бесконечности).

Предел натурального log можно записать таким образом:

Интересные сведения

Логарифмы (особенно натуральные и десятичные) широко применимы почти во всех сферах деятельности.

Например, в теории простых чисел, количество простых чисел в интервале от 0 до n будет равно приблизительно: , при этом s-ое простое число приблизительно будет равно .

В математическом анализе, как мы уже убедились ранее, натуральные логарифмы встречаются сплошь и рядом, при этом они объединяют тригонометрические и логарифмические функции при помощи интегралов, например интеграл от тангенса:

.

В статистике и теории вероятности логарифмические величины встречаются очень часто. Это неудивительно, ведь число е зачастую отражает темп роста экспоненциальных величин.

В информатике, программировании и теории вычислительных машин, логарифмы встречаются довольно часто, например для того чтобы сохранить в памяти натуральное число N понадобится битов.

В теориях фракталов и размерностях логарифмы используются постоянно, поскольку размерности фракталов определяются только с их помощью.

В механике и физике нет такого раздела, где не использовались логарифмы. Барометрическое распределение, все принципы статистической термодинамики, уравнение Циолковского и прочее процессы, которые математически можно описать только при помощи логарифмирования.

В химии логарифмирование используют в уравнениях Нернста, описаниях окислительно-восстановительных процессов.

Поразительно, но даже в музыке, с целью узнать количество частей октавы, используют логарифмы.

Натуральный логарифм Функция y=ln x ее свойства


Источники


  • https://MicroExcel.ru/naturalny-logarifm/
  • https://zero2hero.org/article/math/7-razbiraemsya-s-n
  • https://tvercult.ru/nauka/svoystva-naturalnyih-logarifmov-grafik-osnovanie-funktsii-predel-formulyi-i-oblast-opredeleniya
  • https://1cov-edu.ru/mat_analiz/funktsii/ln/
  • https://BBF.ru/calculators/167/
  • http://www.mathprofi.ru/integrirovanie_po_chastyam.html
  • https://dic.academic.ru/dic.nsf/ruwiki/1056716
  • https://wikipedia.tel/%D0%9D%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%BB%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: