Объем тетраэдра – формулы, примеры расчета, калькулятор

Свойства тетраэдра.

Параллельные плоскости, которые проходят через пары рёбер тетраэдра, что скрещиваются, и определяют описанный параллелепипед около тетраэдра.

Плоскость, которая проходит сквозь середины 2-х рёбер тетраэдра, что скрещиваются, и делит его на 2 части, одинаковые по объему.

Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, если считать от вершины. Она же делит бимедианы на две равные части.

Элементы четырехгранника

Отрезок, выпущенный из любой вершины тетраэдра и опущенный на точку пересечения медиан грани, являющейся противоположной, называется медианой.

Высота многоугольника представляет собой нормальный отрезок, опущенный из вершины напротив.

Бимедианой называется отрезок, соединяющий центры скрещивающихся ребер.

Правильный тетраэдр – частный вид тетраэдра

Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:

  • Все грани равны.
  • Все плоские углы правильного тетраэдра равны 60°
  • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
  • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

Пусть нам дан правильный тетраэдр ABCD с ребрами равными a. DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD.
Высота BM равна BM и равна
Рассмотрим треугольник BDM, где DH, являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

, где
BM=, DM=, BD=a,
p=1/2 (BM+BD+DM)=
Подставим эти значения в формулу высоты. Получим

Вынесем 1/2a. Получим



Применим формулу разность квадратов

После небольших преобразований получим


Объем любого тетраэдра можно рассчитать по формуле
,
где ,

Подставив эти значения, получим

Таким образом формула объема для правильного тетраэдра

где a –ребро тетраэдра

Общая формула (через площадь основания и высоту)

Объем (V) тетраэдра считается также, как и объем любой пирамиды. Он равняется одной третьей произведения площади любой грани и высоты, опущенной на нее:

  • S – площадь грани ABC, в данном случае выступающего в роли основания
  • h – высота, опущенная на грань ABC

Векторное произведение векторов

В данной операции, точно так же, как и в скалярном произведении, участвуют два вектора. Пусть это будут нетленные буквы .

Само действие обозначаетсяследующим образом: . Существуют и другие варианты, но я привык обозначать векторное произведение векторов именно так, в квадратных скобках с крестиком.

И сразу вопрос: если в скалярном произведении векторов участвуют два вектора, и здесь тоже умножаются два вектора, тогда в чём разница? Явная разница, прежде всего, в РЕЗУЛЬТАТЕ:

Результатом скалярного произведения векторов является ЧИСЛО:

Результатом векторного произведения векторов является ВЕКТОР: , то есть умножаем векторы и получаем снова вектор. Закрытый клуб. Собственно, отсюда и название операции. В различной учебной литературе обозначения тоже могут варьироваться, я буду использовать букву , то есть умножаем векторы и получаем снова вектор. Закрытый клуб. Собственно, отсюда и название операции. В различной учебной литературе обозначения тоже могут варьироваться, я буду использовать букву .

Определение векторного произведения

Сначала будет определение с картинкой, затем комментарии.

Определение: Векторным произведением неколлинеарныхвекторов неколлинеарныхвекторов , взятых в данном порядке, называется ВЕКТОР , длинакоторого численно равна площади параллелограмма, построенного на данных векторах; вектор , длинакоторого численно равна площади параллелограмма, построенного на данных векторах; вектор ортогонален векторам, и направлен так, что базис , и направлен так, что базис имеет правую ориентацию:

Разбираем определение по косточкам, тут много интересного!

Итак, можно выделить следующие существенные моменты:

1) Исходные векторы , обозначенные красными стрелками, по определению не коллинеарны. Случай коллинеарных векторов будет уместно рассмотреть чуть позже.

2) Векторы взяты в строго определённом порядке: взяты в строго определённом порядке: «а» умножается на «бэ», а не «бэ» на «а». Результатом умножения векторовявляется ВЕКТОР , который обозначен синим цветом. Если векторы умножить в обратном порядке, то получим равный по длине и противоположный по направлению вектор , который обозначен синим цветом. Если векторы умножить в обратном порядке, то получим равный по длине и противоположный по направлению вектор (малиновый цвет). То есть, справедливо равенство .

3) Теперь познакомимся с геометрическим смыслом векторного произведения. Это очень важный пункт! ДЛИНА синего вектора (а, значит, и малинового вектора (а, значит, и малинового вектора ) численно равна ПЛОЩАДИ параллелограмма, построенного на векторах . На рисунке данный параллелограмм заштрихован чёрным цветом.

Примечание: чертёж является схематическим, и, естественно, номинальная длина векторного произведения не равна площади параллелограмма.

Вспоминаем одну из геометрических формул: площадь параллелограмма равна произведению смежных сторон на синус угла между ними. Поэтому, исходя из вышесказанного, справедлива формула вычисления ДЛИНЫ векторного произведения:

Подчёркиваю, что в формуле речь идёт о ДЛИНЕ вектора, а не о самом векторе . Каков практический смысл? А смысл таков, что в задачах аналитической геометрии площадь параллелограмма часто находят через понятие векторного произведения:

Получим вторую важную формулу. Диагональ параллелограмма (красный пунктир) делит его на два равных треугольника. Следовательно, площадь треугольника, построенного на векторах (красная штриховка), можно найти по формуле:
(красная штриховка), можно найти по формуле:

4) Не менее важный факт состоит в том, что вектор ортогонален векторам ортогонален векторам , то есть . Разумеется, противоположно направленный вектор . Разумеется, противоположно направленный вектор (малиновая стрелка) тоже ортогонален исходным векторам .

5) Вектор направлен так, что базис направлен так, что базис имеет правую ориентацию. На уроке о переходе к новому базису я достаточно подробно рассказал об ориентации плоскости, и сейчас мы разберёмся, что такое ориентация пространства. Объяснять буду на пальцах вашей правой руки. Мысленно совместите указательный палец с вектором и средний палец с вектором и средний палец с вектором . Безымянный палец и мизинец прижмите к ладони. В результате большой палец – векторное произведение будет смотреть вверх. Это и есть правоориентированный базис (на рисунке именно он).

Теперь совместите указательный палец левой руки с тем же вектором , а средний – с вектором , а средний – с вектором . При этом большой палец будет неизбежно смотреть вниз – по направлению вектора . Это левый или левоориентированный базис . Это левый или левоориентированный базис .

Образно говоря, данные базисы «закручивают» или ориентируют пространство в разные стороны. И это понятие не следует считать чем-то надуманным или абстрактным – так, например, ориентацию пространства меняет самое обычное зеркало, и если «вытащить отражённый объект из зазеркалья», то его в общем случае не удастся совместить с «оригиналом». Кстати, поднесите к зеркалу три пальца и проанализируйте отражение ;-) Или просто попробуйте совместить «базисы» левой и правой руки, после чего станет понятно, что указательные и средние пальцы не совмещаются.

…как всё-таки хорошо, что вы теперь знаете о право- и левоориентированных базисах, ибо страшнЫ высказывания некоторых лекторов о смене ориентации =)

Векторное произведение коллинеарных векторов

Определение подробно разобрано, осталось выяснить, что происходит, когда векторы коллинеарны. Если векторы коллинеарны, то их можно расположить на одной прямой и наш параллелограмм тоже «складывается» в одну прямую. Площадь такого, как говорят математики, вырожденного параллелограмма равна нулю. Это же следует и из формулы коллинеарны. Если векторы коллинеарны, то их можно расположить на одной прямой и наш параллелограмм тоже «складывается» в одну прямую. Площадь такого, как говорят математики, вырожденного параллелограмма равна нулю. Это же следует и из формулы – синус нуля или 180-ти градусов равен нулю, а значит, и площадь нулевая

Таким образом, если , то , то и . Обратите внимание, что само векторное произведение равно нулевому вектору, но на практике этим часто пренебрегают и пишут, что оно тоже равно нулю.

Частный случай – векторное произведение вектора на самого себя:

С помощью векторного произведения можно проверять коллинеарность трёхмерных векторов, и данную задачу среди прочих мы тоже разберём.

Для решения практических примеров может потребоваться тригонометрическая таблица, чтобы находить по ней значения синусов.

Ну что же, разжигаем огонь:

Пример 1

а) Найти длину векторного произведения векторов , если , если

б) Найти площадь параллелограмма, построенного на векторах , если , если

Решение: Нет, это не опечатка, исходные данные в пунктах условия я намеренно сделал одинаковыми. Потому что оформление решений будет отличаться!

а) По условию требуется найти длину вектора (векторного произведения). По соответствующей формуле:

Ответ:

Коль скоро спрашивалось о длине, то в ответе указываем размерность – единицы.

б) По условию требуется найти площадь параллелограмма, построенного на векторах . Площадь данного параллелограмма численно равна длине векторного произведения:
. Площадь данного параллелограмма численно равна длине векторного произведения:

Ответ:

Обратите внимание, что в ответе о векторном произведении речи не идёт вообще, нас спрашивали о площади фигуры, соответственно, размерность – квадратные единицы.

Всегда смотрим, ЧТО требуется найти по условию, и, исходя из этого, формулируем чёткий ответ. Может показаться буквоедством, но буквоедов среди преподавателей хватает, и задание с хорошими шансами вернётся на доработку. Хотя это не особо натянутая придирка – если ответ некорректен, то складывается впечатление, что человек не разбирается в простых вещах и/или не вник в суть задания. Этот момент всегда нужно держать на контроле, решая любую задачу по высшей математике, да и по другим предметам тоже.

Куда подевалась большая буковка «эн»? В принципе, её можно было дополнительно прилепить в решение, но в целях сократить запись, я этого не сделал. Надеюсь, всем понятно, что и и – это обозначение одного и того же.

Популярный пример для самостоятельного решения:

Пример 2

Найти площадь треугольника, построенного на векторах , если , если

Формула нахождения площади треугольника через векторное произведение дана в комментариях к определению. Решение и ответ в конце урока.

На практике задача действительно очень распространена, треугольниками вообще могут замучить.

Для решения других задач нам понадобятся:

Тетраэдры в живой природе

 

Тетраэдр из грецких орехов

Некоторые плоды, находясь вчетвером на одной кисти, располагаются в вершинах тетраэдра, близкого к правильному. Такая конструкция обусловлена тем, что центры четырёх одинаковых шаров, касающихся друг друга, находятся в вершинах правильного тетраэдра. Поэтому похожие на шар плоды образуют подобное взаимное расположение. Например, таким образом могут располагаться грецкие орехи.

Типы тетраэдров.

Правильный тетраэдр – это такая правильная треугольная пирамида, каждая из граней которой оказывается равносторонним треугольником.

У правильного тетраэдра каждый двугранный угол при рёбрах и каждый трёхгранный угол при вершинах имеют одинаковую величину.

Тетраэдр состоит из 4 граней, 4 вершин и 6 ребер.

Правильный тетраэдр – это один из 5-ти правильных многогранников.

Кроме правильного тетраэдра, заслуживают внимания такие типы тетраэдров:

Равногранный тетраэдр, у него каждая грань представляет собой треугольник. Все грани-треугольники такого тетраэдра равны.

Ортоцентрический тетраэдр, у него каждая высота, опущенная из вершин на противоположную грань, пересекается с остальными в одной точке.

Прямоугольный тетраэдр, у него каждое ребро, прилежащее к одной из вершин, перпендикулярно другим ребрам, прилежащим к этой же вершине.

Каркасный тетраэдр — тетраэдр, который таким условиям:

  • есть сфера, которая касается каждого ребра,
  • суммы длин ребер, что скрещиваются равны,
  • суммы двугранных углов при противоположных ребрах равны,
  • окружности, которые вписаны в грани, попарно касаются,
  • каждый четырехугольник, образующийся на развертке тетраэдра, — описанный,
  • перпендикуляры, поставленные к граням из центров окружностей, в них вписанных, пересекаются в одной точке.

Соразмерный тетраэдр, бивысоты у него одинаковы.

Инцентрический тетраэдр, у него отрезки, которые соединяют вершины тетраэдра с центрами окружностей, которые вписаны в противоположные грани, пересекаются в одной точке.

Связанные определения

  • Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины.
  • Отрезок, соединяющий середины скрещивающихся рёбер тетраэдра, называется его бимедианой, соединяющей данные рёбра.
  • Отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани, называется его высотой, опущенной из данной вершины.

Свойства тетраэдра

1) Параллельные плоскости, которые проходят через два скрещивающихся ребра, образуют описанный параллелепипед.

2) Отличительным свойством тетраэдра является то, что медианы и бимедианы фигуры встречаются в одной точке. Важно, что последняя делит медианы в отношении 3:1, а бимедианы – пополам.

3) Плоскость разделяет тетраэдр на две равные по объему части, если проходит через середину двух скрещивающихся ребер.

Объем правильного тетраэдра

В правильном тетраэдре все грани являются равносторонними треугольниками. Объем данной фигуры равен одной двенадцатой произведения длины его ребра в кубе на квадратный корень из числа 2.

Т.к. это правильный тетраэдр, все его ребра равны (AB = BC = AC = AD = BD = CD).

Формулы объема тетраэдра

Объем данного тела можно найти несколькими способами. Разберем их более подробно.

Через смешанное произведение векторов

Если тетраэдр построен на трех векторах с координатами:

a=(ax,ay,az)vec{a}=(a_x, a_y, a_z)


b=(bx,by,bz)vec{b}=(b_x, b_y, b_z)


c=(cx,cy,cz)vec{c}=(c_x, c_y, c_z)

,

тогда объем этого тетраэдра это смешанное произведение этих векторов, то есть такой определитель:

Объем тетраэдра через определитель

V=16axayazbxbybzcxcyczV=frac{1}{6}cdotbegin{vmatrix} a_x & a_y & a_z \ b_x & b_y & b_z \ c_x & c_y & c_z \ end{vmatrix}

Задача 1

Известны координаты четырех вершин октаэдра.

A(1,4,9)A(1,4,9)

,

B(8,7,3)B(8,7,3)

,

C(1,2,3)C(1,2,3)

,

D(7,12,1)D(7,12,1)

. Найдите его объем.

Решение

A(1,4,9)A(1,4,9)


B(8,7,3)B(8,7,3)


C(1,2,3)C(1,2,3)


D(7,12,1)D(7,12,1)

Первым шагом является определение координат векторов, на которых построено данное тело.
Для этого необходимо найти каждую координату вектора путем вычитания соответствующих координат двух точек. Например, координаты вектора

ABoverrightarrow{AB}

, то есть, вектора, направленного от точки

AA

к точке

BB

, это разности соответствующих координат точек

BB

и

AA

:

AB=(81,74,39)=(7,3,6)overrightarrow{AB}=(8-1, 7-4, 3-9)=(7, 3, -6)

Далее, аналогично:

AC=(11,24,39)=(0,2,6)overrightarrow{AC}=(1-1, 2-4, 3-9)=(0, -2, -6)


AD=(71,124,19)=(6,8,8)overrightarrow{AD}=(7-1, 12-4, 1-9)=(6, 8, -8)

Теперь найдем смешанное произведение данных векторов, для этого составим определитель третьего порядка, при этом принимая, что

AB=aoverrightarrow{AB}=vec{a}

,

AC=boverrightarrow{AC}=vec{b}

,

AD=coverrightarrow{AD}=vec{c}

.

Ответ

44.8см3.44.8text{ см}^3.

Формула объема равногранного тетраэдра по его стороне

Эта формула справедлива только для вычисления объема равногранного тетраэдра, то есть такого тетраэдра, у которого все грани являются одинаковыми правильными треугольниками.

Объем равногранного тетраэдра

V=2a312V=frac{sqrt{2}cdot a^3}{12}

aa

— длина ребра тетраэдра.

Задача 2

Определить объем тетраэдра, если дана его сторона, равная

11см11text{ см}

.

Решение

a=11a=11

Подставляем

aa

в формулу для объема тетраэдра:

V=2a312=211312156.8см3V=frac{sqrt{2}cdot a^3}{12}=frac{sqrt{2}cdot 11^3}{12}approx156.8text{ см}^3

Ответ

156.8см3.156.8text{ см}^3.

Виды тетраэдра

Видовое разнообразие фигуры достаточно широко. Тетраэдр может быть:

  • правильным, то есть в основании равносторонний треугольник;
  • равногранным, у которого все грани одинаковы по длине;
  • ортоцентрическим, когда высоты имеют общую точку пересечения;
  • прямоугольным, если плоские углы при вершине нормальные;
  • соразмерным, все би высоты равны;
  • каркасным, если присутствует сфера, которая касается ребер;
  • инцентрическим, то есть отрезки, опущенные из вершины в центр вписанной окружности противоположной грани, имеют общую точку пересечения; эту точку именуют центром тяжести тетраэдра.

Остановимся подробно на правильном тетраэдре, свойства которого практически не отличаются.

Исходя из названия, можно понять, что так он называется потому, что грани являют собой правильные треугольники. Все ребра этой фигуры конгруэнтны по длине, а грани – по площади. Правильный тетраэдр – это один из пяти аналогичных многогранников.

Тетраэдры в технике

  • Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм мостов и т. д. Стержни испытывают только продольные нагрузки.
  • Прямоугольный тетраэдр используется в оптике. Если грани, имеющие прямой угол, покрыть светоотражающим составом или весь тетраэдр выполнить из материала с сильным светопреломлением, чтобы возникал эффект полного внутреннего отражения, то свет, направленный в грань, противоположную вершине с прямыми углами, будет отражаться в том же направлении, откуда он пришёл. Это свойство используется для создания уголковых отражателей, катафотов.
  • Граф четверичного триггера представляет собой тетраэдр.

Примеры задач

Задание 1
Площадь одной из граней тетраэдра равна 24 см2, а высоту, опущенная на нее – 9 см. Найдите объем фигуры.

Решение:
Применим общую формулу и получаем:

Задание 2
Дан правильный тетраэдр, ребро которого равняется 8 см. Найдите его объем.

Решение:
Воспользуемся формулой для расчета объема правильной фигуры:

Источники


  • https://www.calc.ru/1535.html
  • https://1Ku.ru/obrazovanie/37414-svojstva-tetrajedra-vidy-i-formuly/
  • https://2mb.ru/matematika/geometriya/obem-tetraedra/
  • https://MicroExcel.ru/obyom-tetraedra/
  • http://www.mathprofi.ru/vektornoe_proizvedenie_vektorov_smeshannoe_proizvedenie.html
  • https://dic.academic.ru/dic.nsf/ruwiki/26741
  • https://studwork.org/spravochnik/matematika/obemy-figur/obem-tetraedra

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: