Переводы из различных систем счисления

Содержание
  1. Двоичная система
  2. Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения
  3. Почему двоичная система счисления так распространена?
  4. Кратко об основных системах счисления
  5. Перевод из одной системы счисления в другую
  6. Перевод из двоичной системы в восьмеричную
  7. Вавилонская десятеричная / шестидесятеричная
  8. Перевод 8 – 10
  9. Перевод целой части числа из десятичной системы счисления в другую систему счисления
  10. Перевод дробной части числа из десятичной системы счисления в другую систему счисления
  11. Перевод из двоичной системы в шестнадцатеричную
  12. Перевод чисел из любой системы счисления в десятичную систему счисления
  13. Двадцатеричная система счисления индейцев Майя
  14. Арифметические действия
  15. Древнекитайская десятеричная
  16. Перевод чисел из десятичной системы счисления в двоичную
  17. Перевод десятичного числа в двоичное

Двоичная система

Система счисления, которая в своем арсенале использует только две цифры, то есть имеющая основание два, называется двоичной или бинарной. В такой системе числа заменяются последовательностью нулей и единиц. Например, десятичное число 134 в двоичном формате выглядит как 10000110. Для того чтобы понять, как это работает, следует придерживаться правил перевода чисел из одной системы счисления в другую.

Рис. 1. Двоичная система счисления.

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число 6 3 7 2
позиция 3 2 1 0

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·103+3·102+7·101+2·100.

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число 1 2 8 7 . 9 2 3
позиция 3 2 1 0 -1 -2 -3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·103 +2·102 +8·101+7·100+9·10-1+2·10-2+3·10-3.

В общем случае формулу можно представить в следующем виде:

Цn·snn-1·sn-1+…+Ц1·s10·s0-1·s-1-2·s-2+…+Д-k·s-k
(1)

где Цn-целое число в позиции n, Д-k– дробное число в позиции (-k), s – система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления – из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления – из множества цифр {0,1}, в шестнадцатеричной системе счисления – из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. #FF0000 – красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15.

Перевод из одной системы счисления в другую

Как же нам переводить числа из одной системы счисления в другую? Здесь все просто, следуем примеру из второй главы, где написано, как использовать калькулятор Windows для перевода чисел из десятичной системы в двоичную. С помощью этого калькулятора мы также можем переводить числа из десятичной системы счисления в двоичную, восьмеричную, шестнадцатеричную и обратно. Запускаем наш калькулятор, пишем от балды число “123” в десятичной системе счисления. Для этого ставим маркер на “Dec” и для красоты “1 байт”.

Для того, чтобы перевести это число в двоичную систему счисления, ставим маркер на “Bin” и получаем число “123” в двоичной системе счисления.

Для перевода в восьмеричную систему ставим маркер на “Oct”.

Ну и для перевода в шестнадцатеричную систему ставим маркер на “Hex”.

Все операции взаимозаменяемы. Это значит, что мы можем перевести число из двоичной в шестнадцатеричную, из восьмеричной в двоичную и так далее. Чтобы не спутать системы счисления и знать, какое число записано, после каждого записанного числа снизу ставится его индекс системы счисления. Например:

7ВС16 – значит число записано в шестнадцатеричной системе счисления

10112 – в двоичной системе

4578 – в восьмеричной системе

998510 – в десятеричной системе.

Перевод из двоичной системы в восьмеричную

Способ 1:

Для перевода в восьмеричную систему нужно разбить двоичное число на группы по 3 цифры справа налево. В последней (самой левой) группе вместо недостающих цифр поставить слева нули. Для каждой полученной группы произвести умножение каждого разряда на 2n, где n – номер разряда.

11012 = (001) (101) = (0*22 + 0*21 + 1*20) (1*22 + 0*21 + 1*20) = (0+0+1) (4+0+1) = (1) (5) = 158

Способ 2:

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Триада 000 001 010 011 100 101 110 111
Цифра 0 1 2 3 4 5 6 7
101110102 = (010) (111) (010) = 2728

Вавилонская десятеричная / шестидесятеричная

В древнем Вавилоне примерно во $II$ тысячелетие до нашей эры использовалась система счисления, в которой числа менее $60$ обозначались с помощью двух знаков:


Рисунок 1. для единиц,


Рисунок 2. для десятков

Они имели клинообразный вид, поскольку жители Вавилона писали на глиняных табличках палочками треугольной формы. Знаки в записях повторяли определенное количество раз, например:


Рисунок 3.

Все число в целом записывалось в позиционной системе счисления с основанием $60$. Приведем примеры:


Рисунок 4. Эта запись обозначала $6cdot 60 + 3 = 363$, можно сравнить с записью числа $63$: $6cdot 10 + 3$


Рисунок 5. Эта запись обозначала $32cdot 60 + 52 = 1972$

Шестидесятеричная запись целых чисел не получила широкого распространения за пределами Ассиро-вавилонского царства, но шестидесятеричные дроби применяются до сих пор при измерении времени. Например, одна минута = $60$ секунд, один час = $60$ минут.

Перевод 8 – 10

Преобразование чисел из восьмеричного формата в десятичную форму выполняется с использованием правила перевода: целая часть числа последовательно делится на основание новой системы счисления, то есть 8, и остатки от деления записываются начиная с последнего частного в обратном направлении. Например:

246 / 8 = 30 и в остатке 6

30 / 8 = 3 и в остатке 6

3 меньше 8, деление завершено.

Таким образом, 24610 = 3668.

Обратный перевод выполняется путем разложения числа в развернутую форму:

3668 = 3*82 + 6*81 + 6*80 = 3*64 + 6*8 + 6*1 = 192 + 48 + 6 = 24610

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 27310 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка: 4·82+2·81+1·80 = 256+16+1 = 273 = 273, результат совпал. Значит перевод выполнен правильно.
Ответ: 27310 = 4218

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.12510 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 – целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 – вторая цифра результата), 0.5·2 = 1.0 (1 – третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.12510 = 0.0012

Перевод из двоичной системы в шестнадцатеричную

Способ 1:

Разбиваем число на группы по 4 цифры справа налево. Последнюю (левую) группу дополним при необходимости ведущими нулями. Внутри каждой полученной группы произведем умножение каждой цифры на 2n, где n – номер разряда, и сложим результаты.

110102 = (0001) (1010) = (0*23 + 0*22 + 0*21 + 1*20) (1*23 + 0*22 + 1*21 + 0*20) = (0+0+0+1) (8+0+2+0) = (1) (10) = 1A16

Способ 2:

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Цифра 0 1 2 3 4 5 6 7 8 9 A B C D E F
1011111002 = (0001) (0111) (1100) = 17C16

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1·26+0·25+1·24+1·23+1·22 +0·21+1·20+0·2-1+0·2-2+1·2-3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B – на 11, C– на 12, F – на 15.

Двадцатеричная система счисления индейцев Майя

Эта система интересна тем, что развивалась самостоятельно, без влияния цивилизаций Европы и Азии. Ее использовали в качестве календаря и для астрономических наблюдений. Характерная особенность данной системы счисления – наличие нуля, который изображался в виде ракушки. Основание системы – число $20$, при этом наблюдаются признаки пятеричной системы. Первые $19$ чисел системы получали комбинированием точек (один) и черточек (пять).


Рисунок 7.

Число 20 изображалось из двух цифр, ноль и один наверху и называлось уиналу (рис.8).


Рисунок 8.

Записывали числа столбцами, при это низшие разряды располагали внизу, а высшие – наверху, в результате чего получалось своеобразное изображение этажерки с полками. Если число ноль появлялось без единицы наверху, то это обозначало, что единицы данного разряда отсутствуют. Пример получения числа в такой системе:


Рисунок 9.

Замечание 4

В двадцатеричной системе счета древних майя имелось исключение, проявлявшееся в случае прибавления к числу $359$ одной единицы первого порядка. Суть исключения заключалась в следующем: $360$ является начальным числом третьего порядка и его место уже не на второй, а на третьей полке.

Но при этом получается, что начальное число третьего порядка больше начального числа второго не в двадцать раз ($20cdot 20=400$, а не $360!$), а только в восемнадцать. Отсюда следует, что принцип двадцатеричности нарушен.

Это довольно сложная система счисления использовалась жрецами для астрономических наблюдений, другая система индейцев Майя была аддитивной, похожей на египетскую и применялась в повседневной жизни.

Арифметические действия

Арифметические действия в системе счисления с основанием 8 выполняются также как и в десятичной. Удобнее всего складывать и вычитать большие числа столбиком. Только следует помнить, что после 7 идет 10, то есть сумма восьмеричных чисел 3 + 5 = 10, а не восемь. Удобнее всего при вычислениях пользоваться таблицей сложения восьмеричных чисел.

Рис. 3. Таблица сложения восьмеричных чисел.

Например, сумма 34 + 25 = 61. Это получилось следующим образом. Сначала складываются младшие разряды 4 + 5 = 11 (смотрят по таблице). Единица остается в младшем разряде, а вторая единица переносится в старший разряд и добавляется к сумме чисел 3 + 2 = 5. Итого получилось 61.

Древнекитайская десятеричная

Данная система счисления – самая прогрессивная из старейших, так как она построена на тех же принципах, что и современная «арабская», используемая в наше время. Возникла эта система около $4 000$ тысяч лет назад в Китае.


Рисунок 6.

Числа в ней записывались слева направо, от большего к меньшему. При отсутствии какого-либо разряда ничего не ставили и переходили к следующему, такой разряд во времена правления династии Мин стал обозначаться кружочком, аналогом нуля. Во избежание путаницы разрядов ввели несколько служебных иероглифов, которые записывались после основного и показывали, какое значение принимает иероглиф-цифра в данном разряде.

Перевод чисел из десятичной системы счисления в двоичную

Перевод целой части десятичного числа производится путем поочередного деления частного на основание двоичной системы, то есть на два. В остатке от деления останется либо ноль, либо единица. Эти остатки записываются, начиная с последнего частного в направлении слева направо. Это и будет двоичным представлением десятичного числа.

Рассмотрим примеры.

Для перевода десятичного числа 29 в двоичный формат:

Делят 29 на два, получают 14 и в остатке 1. Остаток следует запомнить.

Затем частное от деления, то есть число 14 снова делят на два, получено 7 и в остатке 0 (ноль).

Разделим 7 на два, получим частное 3 и остаток 1.

Три делят на два, получено в частном 1 и остаток 1.

Так как последнее частное 1 меньше основания системы счисления, то есть числа 2, то последовательное деление прекращают.

Затем записывают остатки, начиная с последнего частного, и получают последовательность чисел: 11101. Таким образом, десятичное число 29 в двоичной системе счисления равно 11101.

Еще один пример: перевод числа 37 в двоичный формат.

37 / 2 = 18 (1)

18 / 2 = 9 (0)

9 / 2 = 4 (1)

4 / 2 = 2 (0)

2 / 2 = 1(0)

Получен результат: 100101.

Если десятичные числа расположить последовательно и сопоставить с их двоичными эквивалентами, то можно увидеть некоторую закономерность.

Таблица двоичной системы счисления

0

0

8

1000

1

01

9

1001

2

10

10

1010

3

11

11

1011

4

100

12

1100

5

101

13

1101

6

110

14

1110

7

111

15

1111

Как видно из таблицы, после 11 в числовом ряду двоичных чисел идет число 100. Так как в двоичной системе счисления только два знака 0 и 1 для обозначения числа, то происходит сдвиг разрядной сетки влево. После двузначного числа 11 идет трехзначное число 100.

Таблицей двоичной системы удобно пользоваться для перевода только небольших десятичных чисел. Ее даже рекомендуется запомнить, как таблицу умножения в математике. Но ни в коем случае нельзя по таблице переводить отдельные цифры числа в десятичный формат. Это приведет к ошибке. Например, десятичное число 15 это не 1 и 101, (вместе 1101), а все-таки 1111.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*26 + 0*25 + 0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77


Источники


  • https://obrazovaka.ru/informatika/dvoichnaya-sistema-schisleniya-tablica-8-klass.html
  • https://matworld.ru/calculator/perevod-chisel.php
  • https://inf1.info/binarynotation
  • https://calcus.ru/perevod-sistem-schisleniya
  • https://www.RusElectronic.com/osnovy-tsifrovoj-elektroniki-chast-3/
  • https://spravochnick.ru/informatika/sistemy_schisleniya/pozicionnye_sistemy_schisleniya/
  • https://obrazovaka.ru/informatika/vosmerichnaya-sistema-schisleniya-kak-perevodit.html
  • https://programforyou.ru/calculators/number-systems

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: