Примеры функции ПОЛУЧЕНО для финансовых расчетов в Excel

Выполнение расчетов с помощью финансовых функций

В группу данных операторов входит более 50 формул. Мы отдельно остановимся на десяти самых востребованных из них. Но прежде давайте рассмотрим, как открыть перечень финансового инструментария для перехода к выполнению решения конкретной задачи.

Переход к данному набору инструментов легче всего совершить через Мастер функций.

  1. Выделяем ячейку, куда будут выводиться результаты расчета, и кликаем по кнопке «Вставить функцию», находящуюся около строки формул.
  2. Запускается Мастер функций. Выполняем клик по полю «Категории».
  3. Открывается список доступных групп операторов. Выбираем из него наименование «Финансовые».
  4. Запускается перечень нужных нам инструментов. Выбираем конкретную функцию для выполнения поставленной задачи и жмем на кнопку «OK». После чего открывается окно аргументов выбранного оператора.

В Мастер функций также можно перейти через вкладку «Формулы». Сделав переход в неё, нужно нажать на кнопку на ленте «Вставить функцию», размещенную в блоке инструментов «Библиотека функций». Сразу вслед за этим запустится Мастер функций.

Имеется в наличии также способ перехода к нужному финансовому оператору без запуска начального окна Мастера. Для этих целей в той же вкладке «Формулы» в группе настроек «Библиотека функций» на ленте кликаем по кнопке «Финансовые». После этого откроется выпадающий список всех доступных инструментов данного блока. Выбираем нужный элемент и кликаем по нему. Сразу после этого откроется окно его аргументов.

ДОХОД

Одним из наиболее востребованных операторов у финансистов является функция ДОХОД. Она позволяет рассчитать доходность ценных бумаг по дате соглашения, дате вступления в силу (погашения), цене за 100 рублей выкупной стоимости, годовой процентной ставке, сумме погашения за 100 рублей выкупной стоимости и количеству выплат (частота). Именно эти параметры являются аргументами данной формулы. Кроме того, имеется необязательный аргумент «Базис». Все эти данные могут быть введены с клавиатуры прямо в соответствующие поля окна или храниться в ячейках листах Excel. В последнем случае вместо чисел и дат нужно вводить ссылки на эти ячейки. Также функцию можно ввести в строку формул или область на листе вручную без вызова окна аргументов. При этом нужно придерживаться следующего синтаксиса:

=ДОХОД(Дата_сог;Дата_вступ_в_силу;Ставка;Цена;Погашение»Частота;[Базис])

БС

Главной задачей функции БС является определение будущей стоимости инвестиций. Её аргументами является процентная ставка за период («Ставка»), общее количество периодов («Кол_пер») и постоянная выплата за каждый период («Плт»). К необязательным аргументам относится приведенная стоимость («Пс») и установка срока выплаты в начале или в конце периода («Тип»). Оператор имеет следующий синтаксис:

=БС(Ставка;Кол_пер;Плт;[Пс];[Тип])

ВСД

Оператор ВСД вычисляет внутреннюю ставку доходности для потоков денежных средств. Единственный обязательный аргумент этой функции – это величины денежных потоков, которые на листе Excel можно представить диапазоном данных в ячейках («Значения»). Причем в первой ячейке диапазона должна быть указана сумма вложения со знаком «-», а в остальных суммы поступлений. Кроме того, есть необязательный аргумент «Предположение». В нем указывается предполагаемая сумма доходности. Если его не указывать, то по умолчанию данная величина принимается за 10%. Синтаксис формулы следующий:

=ВСД(Значения;[Предположения])

МВСД

Оператор МВСД выполняет расчет модифицированной внутренней ставки доходности, учитывая процент от реинвестирования средств. В данной функции кроме диапазона денежных потоков («Значения») аргументами выступают ставка финансирования и ставка реинвестирования. Соответственно, синтаксис имеет такой вид:

=МВСД(Значения;Ставка_финансир;Ставка_реинвестир)

ПРПЛТ

Оператор ПРПЛТ рассчитывает сумму процентных платежей за указанный период. Аргументами функции выступает процентная ставка за период («Ставка»«Период»), величина которого не может превышать общее число периодов; количество периодов («Кол_пер»«Пс»). Кроме того, есть необязательный аргумент – будущая стоимость («Бс»). Данную формулу можно применять только в том случае, если платежи в каждом периоде осуществляются равными частями. Синтаксис её имеет следующую форму:

=ПРПЛТ(Ставка;Период;Кол_пер;Пс;[Бс])

ПЛТ

Выделяем ячейку A2 и вставляем функцию ПЛТ (PMT).

Пояснение: Последние два аргумента функции ПЛТ (PMT) не обязательны. Значение Fv для займов может быть опущено (будущая стоимость займа подразумевается равной $0, однако в данном примере значение Fv использовано для ясности). Если аргумент Type не указан, то считается, что платежи совершаются в конце периода.

Результат: Ежемесячный платёж равен $1074.65.

Совет: Работая с финансовыми функциями в Excel, всегда задавайте себе вопрос: я выплачиваю (отрицательное значение платежа) или мне выплачивают (положительное значение платежа)? Мы получаем взаймы сумму $150000 (положительное, мы берём эту сумму) и мы совершаем ежемесячные платежи в размере $1074.65 (отрицательное, мы отдаём эту сумму).

КПЕР

Функция КПЕР (NPER) похожа на предыдущие, помогает рассчитать количество периодов для выплат. Если мы ежемесячно совершаем платежи в размере $1074.65 по займу, срок которого составляет 20 лет с процентной ставкой 6% в год, то нам потребуется 240 месяцев, чтобы выплатить этот заём полностью.

Это нам известно и без формул, но мы можем изменить ежемесячный платёж и увидеть, как это отразится на количестве платёжных периодов.

Вывод: Если мы будем ежемесячно вносить платёж в размере $2074.65 , то выплатим заём менее чем за 90 месяцев.

Примеры использования функции ПОЛУЧЕНО для финансовых расчетов

Пример 1. Предприятие выпустило ценные бумаги общей стоимостью 3 млн. рублей, которые были согласованы 26.06.2018. Окончание срока действия – 28.04.2023. Дисконт составляет 3,25%. Необходимо определить сумму средств, полученных на момент полного погашения стоимости учитывая, что для расчета необходимо использовать фактический/360 метод расчета количества дней.

Внесем исходные данные в таблицу:

Для решения используем следующую функцию:

Описание аргументов:

  • B3 – дата выпуска ценных бумаг;
  • B4 – момент окончания срока годности ценных бумаг;
  • B5 – объем инвестиций;
  • B6 – дисконт;
  • 2 – выбранный вариант базиса (фактический/360).

В результате получим:

То есть, за полностью обеспеченные ценные бумаги было получено 3569392,46 рублей.

Расчет фактической стоимости облигаций в Excel по функции ПОЛУЧЕНО

Пример 2. Были выпущены облигации 30.06.2018 сроком на 1 год. Сумма инвестиций в облигации – 2 млн. рублей. Прогнозируемая стоимость полностью обеспеченных бумаг составляет 2 млн. 100 тыс. рублей. Соответствует ли фактическая стоимость облигаций на момент их погашения прогнозируемой, если дисконт составляет 8%? Если нет, определить дисконт для прогнозируемой стоимости.

Исходная таблица имеет следующий вид:

Для решения используем следующую формулу:

Функция ЕСЛИ выполняет проверку равенства прогнозируемой и фактической стоимости ценных бумаг при дисконте 8%. В случае неравенства величин будет выведен результат вычислений 1-(B5/B7))*100 – записи, полученной исходя из математического смысла функции ПОЛУЧЕНО:

Средства_за_полностью_обеспеченную_облигацию = инвестиции/(1-(дисконт*(срок_годности_облигации/число_дней_в_году)))

Примечание: значение срок_годности_облигации/число_дней_в_году было опущено в данном примере, поскольку срок годности облигаций составляет 1 год (365/365 = 1).

То есть, фактический дисконт составил 9,09%.

Формула ОСПЛТ()

Данная формула в качестве результата выводит основную часть выплат по кредиту за заданный период (то есть ту часть платежа, которая уходит на оплату именно ссуды, а не процентов).

При этом учитывается, что параметры Ставка и размер выплат не меняются.

У функции ОСПЛТ() такие же аргументы, как и предыдущая формула:

Ставка, Кпер, Пс, БС, Тип

Еще добавляется Период (обязательный аргумент) число от 1 до Кпер.

Посмотрим результат функции на предыдущем примере. Нужно рассчитать, сколько денег от первого платежа идет на погашение ссуды, не учитывая оплату процентов:

Рис.7. Применение функции ОСПЛТ()
Рис.8. Результат функции ОСПЛТ()

Мы видим, что основная часть первого платежа равна 9 242,51 руб – это примерно 79% от ежемесячной выплаты.

Если посмотреть результат формулы за 48-ой период, то получим уже 11 684,1 – это 99,5%. Заметная разница говорит о том, что процентные начисления в большей степени выплачиваются в первые расчетные периоды.

Формула СТАВКА()

Мы уже узнали, как считать объем ежемесячных выплат, процентные переплаты, число будущих выплат и так далее. Помимо этих действий в Excel можно вычислить ставку по кредиту, используя одноименную функцию СТАВКА().

В качестве аргументов выступают хорошо известные нам критерии: Кпер, Плт, Пс, Бс, Тип.

Два последних аргумента — необязательные:

Рис.12. Применение функции СТАВКА()
Рис.13. Результат функции СТАВКА()

Формула БС()

Теперь поговорим о функции БС() – высчитывает стоимость инвестиций после определенного количества периодов при условии неизменной ставки.

Формула записывается следующим образом:

БС(Ставка; Кпер; Плт; Пс; Тип).

Здесь аргумент Пс является необязательным.

Рассмотрим пример:

Пусть 12% — годовая ставка, количество платежей – 12, каждая выплата — 1 000 руб. (знаком минус покажем, что эти деньги нужно отдавать).

Посчитаем стоимость инвестиций при таких условиях:

Рис.14. Применение функции БС()
Рис.15. Результат функции БС()

Отметим, что «сумму выплат» мы специально сделали отрицательной, чтобы показать, что эти деньги вычитаются, и что сумма инвестиций не может быть отрицательной.

Специфика использования финансовых функций Excel

Финансовые функции Excel предназначены для вычисления базовых величин, необходимых при проведении сложных финансовых расчетов. Методика изучения и использования финансовых функций Excel требует соблюдения определенной технологии.

1. На рабочем листе в отдельных ячейках осуществляется подготовказначений основных аргументов функции.

2. Для расчета результата финансовой функции Excel курсор устанавливается в новую ячейку для ввода формулы, использующей встроенную финансовую функцию; если финансовая функция вызывается в продолжение ввода другой формулы, данный пункт опускается.

3. Осуществляется добавление финансовой функции на рабочий листс помощью команды Формулы, из библиотеки функций активизацией опции Финансовые функции или одновременным нажатием клавиш Shift-F3, а также нажатием одноименной кнопки fx Вставить функцию на панели инструментов Стандартная.

4. Выполняется выбор категории Финансовые. В списке Категория содержится полный перечень доступных функций выбранной категории. Поиск функции осуществляется путем последовательного просмотра списка. Для выбора функции курсор устанавливается на имя функции. В нижней части окна приведен краткий синтаксис и справка о назначении выбираемой функции. Кнопка Справка по этой функции вызывает экран справки для встроенной функции, на которой установлен курсор. Кнопка Отмена прекращает работу опции Вставка функции. При нажатии на кнопку ОК осуществляется переход к работе с диалоговым окном выбранной функции.

В списке Категория содержится полный перечень доступных функций выбранной категории. Поиск функции осуществляется путем последовательного просмотра списка. Для выбора функции курсор устанавливается на имя функции. В нижней части окна приведен краткий синтаксис и справка о назначении выбираемой функции. Кнопка Справка по этой функции вызывает экран справки для встроенной функции, на которой установлен курсор. Кнопка Отмена прекращает работу опции Вставка функции. При нажатии на кнопку ОК осуществляется переход к работе с диалоговым окном выбранной функции.

5. Выполняется выбор в списке требуемой финансовой функции, в результате выбора появляется диалоговое окно для ввода аргументов (рис. 2). Для каждой финансовой функции существует регламентированный по составу и формату значений перечень аргументов.

6. В поля ввода диалогового окна можно вводить как ссылки на адреса ячеек, содержащих собственно значения аргументов, так и сами значения аргументов.

7. Если аргумент является результатом расчета другой встроеннойфункции Excel, возможно организовать вычисление вложенной встроенной функции путем вызова опции Вставка функции одноименной кнопкой, расположенной перед полем ввода аргумента.

8. Возможна работа с экраном справки, поясняющей назначение иправила задания аргументов функции; вызов справки осуществляется путем нажатия кнопки Справка по этой функции.

9. Для отказа от работы со встроенной функцией нажимается кнопка Отмена.

10. Завершение ввода аргументов и запуск расчета значения встроенной функции выполняется нажатием кнопки ОК.

При необходимости корректировки значений аргументов функции (изменения ссылок, постоянных значений и т.п.) необходимо установить курсор в ячейку, содержащую формулу, и вызвать кнопку fx Вставить функцию. При этом появляется окно для редактирования.

Возможен вариант непосредственного ввода формулы, содержащей имена и параметры встроенных финансовых функций.

Формула начинается со знака =. Далее следует имя функции, а в круглых скобках указываются её аргументы в последовательности, соответствующей синтаксису функции. В качестве разделителя аргументов используется выбранный при настройке Windows разделитель, обычно это точка с запятой или запятая.

Безусловно, функцию можно ввести, набрав ее прямо в ячейке. Однако Microsoft Excel предоставляет на стандартной панели инструментов кнопку fx Вставить функцию.

Специфика задания значений аргументов финансовых функций заключается в следующем:

– все аргументы, означающие расходы денежных средств, представляются отрицательными числами (например, ежегодные платежи), а аргументы, означающие поступления, представляются положительными числами (например, дивиденды);

– все даты как аргументы функции имеют числовой формат представления, например, дата 1 января 1995 года представлена числом 34700. Если значение аргумента типа дата берется из ячейки, то дата в ячейке может быть записана в обычном виде;

– для аргументов типа логический возможен непосредственный ввод констант типа ИСТИНА или ЛОЖЬ, либо использование встроенных функций аналогичного названия категории Логические

– при непосредственном вводе формулы в ячейку необходимо следить за тем, чтобы каждый аргумент находился строго на своем месте. Если какие-то аргументы не используются, то необходимо поставить соответствующее число разделительных знаков. Если не используется последний аргумент или несколько идущих подряд последних аргументов, то соответствующие разделительные знаки можно опустить (в большинстве случаев это замечание относится к аргументам тип и базис).

Функции для расчета операций по кредитам и займам

В данном разделе показано применение функций Excel, использующих базовые модели финансовых операций. Изложение материала ведется в терминах пакета Excel.

В Excel существует группа функций, предназначенная для расчета финансовых операций по кредитам, ссудам, займам. Эти расчеты основаны на концепции временной стоимости денег, относящихся к разным моментам времени. Эта группа функций охватывает следующие расчеты:

– определение наращенной суммы (будущей стоимости);

– определение начального значения (текущей стоимости);

– определение срока платежа и процентной ставки;

– расчет периодических платежей, связанных с погашением займов.

Понятие будущей стоимости основано на принципе неравноценности денег, относящихся к разным моментам времени. Вложения, сделанные сегодня, в будущем составят большую величину. Эта группа функций позволяет рассчитать:

– будущую или наращенную стоимость серии фиксированных периодических платежей, а также будущую стоимость текущего значения вклада или займа при постоянной процентной ставке;

– будущее значение инвестиции после начисления сложных процентов при переменной процентной ставке.

Во многих задачах используется и понятие текущей (современной) стоимости будущих доходов и расходов. Это понятие базируется на положении о том, что на начальный момент времени полученная в будущем сумма денег имеет меньшую стоимость, чем ее эквивалент, полученный в начальный момент времени.

Согласно концепции временной стоимости денег, расходы и до ходы, не относящиеся к одному моменту времени, можно сопоставить путем приведения к одному сроку (т.е. путем дисконтирования). Текущая стоимость получается как результат приведения будущих доходов и расходов к начальному периоду времени. Excel содержит ряд функций, которые позволяют рассчитать:

– текущую стоимость единой суммы вклада (займа) и фиксированных периодических платежей;

– чистую текущую стоимость будущих периодических расходов и поступлений переменной величины;

– чистую текущую стоимость нерегулярных расходов и поступлений переменной величины.

Функции для определения срока платежа и процентной ставки позволяют находить величины, расчет которых весьма затруднен, если ведется вручную. К ним относятся:

– общее число периодов постоянных выплат, необходимых для достижения заданного будущего значения; число периодов, через которое начальная сумма займа (вклада) достигнет заданного значения;

– значение постоянной процентной ставки за один период серии фиксированных периодических платежей; значение ставки процента по вкладу или займу.

При выпуске ценных бумаг, заключении финансовых контрактов, займах на долговом соглашении указывается годовая номинальная процентная ставка и период начисления (год, полугодие, квартал).

Начисление процентов по номинальной ставке производится по формуле сложных процентов. Годовая ставка, обеспечивающая тот же доход, что и номинальная ставка после начисления сложных процентов, – это эффективная процентная ставка. Номинальная и эффективная процентная ставки эквивалентны по финансовому результату.

Функции Excel также позволяют вычислять следующие величины, связанные с периодическими выплатами:

– периодические платежи, осуществляемые на основе постоянной процентной ставки и не меняющиеся за все время расчета;

– платежи по процентам за конкретный период;

– сумму платежей по процентам за несколько периодов, идущих основные платежи по займу (за вычетом процентов) за конкретный период;

– сумму основных платежей за несколько периодов, идущих подряд.

Все эти величины вычисляются, например, при расчете схемы равномерного погашения займа. Допустим, что заем погашается одинаковыми платежами в конце каждого расчетного периода. Будущая стоимость этих платежей будет равна сумме займа с начисленными процентами к концу последнего расчетного периода, если в нем предполагается полное погашение займа.

С другой стороны, текущая стоимость выплат по займу должна равняться настоящей сумме займа. Если известна сумма займа, ставка процента, срок, на который выдан заем, то можно рассчитать сумму постоянных периодических платежей, необходимых для равномерного погашения займа.

Задача : Предположим, что открыт льготный (не облагаемый налогами) пенсионный счет. При этом планируется вносить на счет 2000$ в начале каждого года в расчете на среднюю скорость оборота 11 % в год на протяжении всего срока. Если считать, что клиенту сейчас 30 лет, то какая сумма будет аккумулирована на его счету, когда ему исполниться 65 лет, и если клиент открыл счет три года назад и на настоящий момент уже накопил 7500$?

Ответ : = БС (11 %;35; -2000;; 1) через 35 лет на счете клиента будет 758328,81$; = БС (11 %; 35; -2000; -7500; 2) с накоплением через 35 лет на счете клиента будет 1047640,19$. В этих двух примерах аргумент тип равен 1, поскольку выплаты производятся в начале периодов. Если опуститьаргументтипвпоследнейформуле, т.е. предполагается, что деньгивносятсянасчетвконцекаждогогода, Excel возвращаетзначение 972490,49$. Разницасоставляетбольше 75000$!

Особенности функции

При использовании функции обращайте внимание на следующие моменты:

  • функция предназначена только для аннуитетных платежей (то есть равных платежей через равные промежутки времени);
  • функция работает по классической кредитной модели, что не всегда совпадает с тем, что предлагают современные кредитные организации. Во многих случаях условия кредитования не позволят успешно применить к ним функцию ПЛТ и придется расписывать отдельную модель и искать решение с помощью Подбора параметра или Поиска решения (создание подобной модели можно заказать на нашем сайте – tDots.ru
  • функция учитывает выплату основной части долга и начисленных процентов, но не принимает в расчет различные дополнительные начисления, комиссии, налоги и сборы и т.д.;
  • знак числа (положительный или отрицательный) задаёт направление денежного потока. Поток от кредитора к должнику (например, сумма займа) будет иметь один знак, а поток от должника к кредитору (например, сумма ежемесячного погашения) – противоположный (неважно, плюс или минус).

БЗРАСПИС

(англ. FVSCHEDULE) – возвращает будущую стоимость инвестиций после начисления ряда сложных процентов (с переменной процентной ставкой, подойдет для вкладов с капитализацией процентов): =БЗРАСПИС(первичное;план), где:

  • «первичное» – стоимость инвестиции на текущий момент,
  • «план» – массив применяемых процентных ставок.

ПС

(англ. PV) – возвращает приведенную (текущую) стоимость инвестиции или займа (на основе постоянной процентной ставки): =ПС(ставка; кпер; плт; [бс]; [тип]), где:

  • «ставка» – процентная ставка за период (можно использовать ставку простого процента в случае с депозитами / вкладами): например, если ставка 6% годовых и выплаты производятся ежемесячно, процентная ставка за месяц составит 6%/12, при ежеквартальных выплатах аргумент «ставка» будет равен 6%/4
  • «кпер» – общее количество периодов для ежегодного платежа: например, в случае кредита на 5 лет и ежемесячных платежах, аргумент «кпер» будет равен 5*12
  • «плт» – постоянная выплата за каждый период (выплаты – отрицательные значения, поступления – положительные значения): например, если ежемесячный платеж по кредиту составляет 10 000 руб., то аргумент «плт» будет равен -10 000.
  • «бс» – будущая стоимость или желаемый остаток средств после последнего платежа (если аргумент опущен, предполагается значение 0 и необходимо обязательно указать аргумент «плт»),
  • «тип» – срок выплаты в начале (1) или в конце периода (0) (если аргумент «тип» опущен, предполагается значение 0, т.е. в конце периода).

ЧПС

(англ. NPV) – возвращает чистую приведенную или дисконтированную стоимость инвестиции при условии серии периодических денежных потоков и с использованием ставки дисконтирования: =ЧПС(ставка; значение1; [значение2],…), где:

  • «ставка» – ставка дисконтирования за один период;
  • «значение1, значение2,…» – предполагаемые выплаты и поступления (должны быть равномерно распределены во времени, при этом выплаты должны осуществляться в конце каждого периода).

ЧИСТНЗ

(англ. XNPV) – возвращает чистую приведенную стоимость для денежных потоков, не обязательно являющихся периодическими: =ЧИСТНЗ(ставка;значения;даты), где:

  • «ставка» – ставка дисконтирования за один период;
  • «значение1, значение2,…» – предполагаемые выплаты и поступления (денежные потоки, соответствующие графику платежей, приведенному в аргументе “даты”. Если первое значение является затратами или выплатой, оно должно быть отрицательным. Все последующие выплаты дисконтируются на основе 365-дневного года. Ряд значений должен содержать по крайней мере одно положительное и одно отрицательное значение);
  • «даты» – график дат платежей, который соответствует платежам для денежных потоков.

ЭФФЕКТ

(англ. EFFECT) – возвращает фактическую (или эффективную) годовую процентную ставку, если заданы номинальная годовая процентная ставка и количество периодов в году, за которые начисляются сложные проценты: =ЭФФЕКТ(номинальная_ставка;кол_пер), где:

  • «номинальная_ставка» — номинальная процентная ставка;
  • «кол_пер» – количество периодов в году, за которые начисляются сложные проценты.

Заключение

Мы с вами проделали большую работу и познакомились с базовыми финансовыми формулами, которые могут применять не только специалисты в узкой области, но и простые пользователи Excel.

Источники


  • https://lumpics.ru/financial-functions-in-excel/
  • https://office-guru.ru/excel/finansovye-funkcii-v-excel-516.html
  • https://exceltable.com/funkcii-excel/primery-funkcii-polucheno
  • https://blog.sf.education/obzor-finansovyh-funkczij-v-excel-2/
  • https://iknigi.net/avtor-evgeniy-shirshov/105525-finansovo-ekonomicheskie-raschety-v-excel-evgeniy-shirshov/read/page-1.html
  • https://zen.yandex.ru/media/id/59affb7afd96b11e8eadd771/5a608b425a104f0ba1c365ab
  • https://vashkaznachei.ru/excel-dlja-finansistov-finansovye-funkcii/

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения