Программа расчета углового преобразования Фишера (фи*)

Назначение и описание критерия Фишера

Критерий Фишера предназначен для сопоставления двух выборок по частоте встречаемости интересующего исследователя эффекта.

Критерий оценивает достоверность различий между процентными долями двух выборок, в которых зарегистрирован интересующий нас эффект.

Суть углового преобразования Фишера состоит в переводе процентных долей в величины центрального угла , который измеряется в радианах. Большей процентной доле будет соответствовать больший угол φ, а меньшей доле – меньший угол, но соотношения здесь не линейные: φ = 2*arcsin(), где P – процентная доля, выраженная в долях единицы.

При увеличении расхождения между углами φ1 и φ2 и увеличения численности выборок значение критерия возрастает. Чем больше величина φ*, тем более вероятно, что различия достоверны.

Гипотезы критерия Фишера

H0: Доля лиц, у которых проявляется исследуемый эффект, в выборке 1 не больше, чем в выборке 2.

H1: Доля лиц, у которых проявляется исследуемый эффект, в выборке 1 больше, чем в выборке 2.

Графики функций

F -распределение при небольших параметрах (

Среднее значение равно k 2 /(k 2 -2) при k 2 >2, дисперсия равна 2*k 2 2 *(k 1 +k 2 -2)/(k 1 *(k 2 -4)*(k 2 -2) 2 ) при k 2 >4.

В файле примера на листе График приведены графики плотности распределения вероятности и интегральной функции распределения .

Примечание : Для построения функции распределения и плотности вероятности можно использовать диаграмму типа График или Точечная (со сглаженными линиями и без точек). Подробнее о построении диаграмм читайте статью Основные типы диаграмм .

F-распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для F-распределения имеется специальная функция F.РАСП() , английское название – F.DIST(), которая позволяет вычислить плотность вероятности (см. формулу выше) и интегральную функцию распределения (вероятность, что случайная величина Х, имеющая F распределение , примет значение меньше или равное х, P(X

Примечание : Плотность вероятности можно также вычислить впрямую, с помощью формул (см. файл примера ).

До MS EXCEL 2010 в EXCEL была функция FРАСП() , которая позволяет вычислить функцию распределения (точнее – правостороннюю вероятность, т.е. P(X>x)). Функция FРАСП() оставлена в MS EXCEL 2010 для совместимости. Аналогом FРАСП() является функция F.РАСП.ПХ() , появившаяся в MS EXCEL 2010.

Примеры расчетов приведены в файле примера на листе Функции .

В MS EXCEL имеется еще одна функция, использующая для расчетов F-распределение – это F.ТЕСТ(массив1;массив2) . Эта функция возвращает результат F-теста : двухстороннюю вероятность того, что разница между дисперсиями выборок “массив1” и “массив2” несущественна. Предполагается, что выборки делаются из нормального распределения.

Оценка взаимосвязи прибыли и затрат по функции ФИШЕР

Пример 1. Используя данные об активности коммерческих организаций, требуется сделать оценку связи прибыли Y (млн руб.) и затрат X (млн руб.), используемых для разработки продукции (приведены в таблице 1).

Таблица 1 – Исходные данные:

X Y
1 210 000 000,00 ₽ 95 000 000,00 ₽
2 1 068 000 000,00 ₽ 76 000 000,00 ₽
3 1 005 000 000,00 ₽ 78 000 000,00 ₽
4 610 000 000,00 ₽ 89 000 000,00 ₽
5 768 000 000,00 ₽ 77 000 000,00 ₽
6 799 000 000,00 ₽ 85 000 000,00 ₽

Схема решения таких задач выглядит следующим образом:

  1. Рассчитывается линейный коэффициент корреляции rxy
  2. Проверяется значимость линейного коэффициента корреляции на основе t-критерия Стьюдента. При этом выдвигается и проверяется гипотеза о равенстве коэффициента корреляции нулю. При проверке этой гипотезы используется t-статистика. Если гипотеза подтверждается, t-статистика имеет распределение Стьюдента. Если расчетное значение tр > tкр, то гипотеза отвергается, что свидетельствует о значимости линейного коэффициента корреляции, а следовательно, и о статистической существенности зависимости между Х и Y;
  3. Определяется интервальная оценка для статистически значимого линейного коэффициента корреляции.
  4. Определяется интервальная оценка для линейного коэффициента корреляции на основе обратного z-преобразования Фишера;
  5. Рассчитывается стандартная ошибка линейного коэффициента корреляции.

Результаты решения данной задачи с применяемыми функциями в пакете Excel приведены на рисунке 1.

Рисунок 1 – Пример расчетов.

№ п/п Наименование показателя Формула расчета
1 Коэффициент корреляции =КОРРЕЛ(B2:B7;C2:C7)
2 Расчетное значение t-критерия tp =ABS(C8)/КОРЕНЬ(1-СТЕПЕНЬ(C8;2))*КОРЕНЬ(6-2)
3 Табличное значение t-критерия trh =СТЬЮДРАСПОБР(0,05;4)
4 Табличное значение стандартного нормального распределения zy =НОРМСТОБР((0,95+1)/2)
5 Значение преобразования Фишера z’ =ФИШЕР(C8)
6 Левая интервальная оценка для z =C12-C11*КОРЕНЬ(1/(6-3))
7 Правая интервальная оценка для z =C12+C11*КОРЕНЬ(1/(6-3))
8 Левая интервальная оценка для rxy =ФИШЕРОБР(C13)
9 Правая интервальная оценка для rxy =ФИШЕРОБР(C14)
10 Стандартное отклонение для rxy =КОРЕНЬ((1-C8^2)/4)

Таким образом, с вероятностью 0,95 линейный коэффициент корреляции заключен в интервале от (–0,386) до (–0,990) со стандартной ошибкой 0,205.

Проверка статистической значимости регрессии по функции FРАСПОБР

Пример 2. Произвести проверку статистической значимости уравнения множественной регрессии с помощью F-критерия Фишера, сделать выводы.

Для проверки значимости уравнения в целом выдвинем гипотезу Н0 о статистической незначимости коэффициента детерминации и противоположную ей гипотезу Н1 о статистической значимости коэффициента детерминации:

Н0: R2 = 0;

Н1: R2 ≠ 0.

Проверим гипотезы с помощью F-критерия Фишера. Показатели приведены в таблице 2.

Таблица 2 – Исходные данные

Показатель SS MS Fрасч
Регрессия 454,814 227,407 7,075
Остаток 1607,014 32,14
Итого 2061,828

Для этого используем в пакете Excel функцию:

=FРАСПОБР (α;p;n-p-1)

где:

  • α – вероятность, связанная с данным распределением;
  • p и n – числитель и знаменатель степеней свободы, соответственно.

Зная, что α = 0,05, p = 2 и n = 53, получаем следующее значение для Fкрит (см. рисунок 2).

Рисунок 2 – Пример расчетов.

Таким образом можно сказать, что Fрасч > Fкрит. В итоге принимается гипотеза Н1 о статистической значимости коэффициента детерминации.

Таблицы по нахождению критерия Фишера и Стьюдента

Таблицы значений F-критерия Фишера и t-критерия Стьюдента Вы можете посмотреть здесь.

Табличное значение критерия Фишера вычисляют следующим образом:

  1. Определяют k1, которое равно количеству факторов (Х). Например, в однофакторной модели (модели парной регрессии) k1=1, в двухфакторной k=2.
  2. Определяют k2, которое определяется по формуле n — m — 1, где n — число наблюдений, m — количество факторов. Например, в однофакторной модели k2 = n — 2.
  3. На пересечении столбца k1 и строки k2 находят значение критерия Фишера

Для нахождения табличного значения критерия Стьюдента определяют число степеней свободы, которое определяется по формуле n — m — 1 и находят его значение при определенном уровне значимости (0,10, 0,05, 0,01).

Критерии Стьюдента

Для оценки статистической значимости модели по параметрам рассчитывают t-критерии Стьюдента.

Оценка значимости модели с помощью критерия Стьюдента проводится путем сравнения их значений с величиной случайной ошибки:

Случайные ошибки коэффициентов линейной регрессии и коэффициента корреляции определяются по формулам:

Сравнивая фактическое и табличное значения t-статистики и принимается или отвергается гипотеза о значимости модели по параметрам.

Зависимость между критерием Фишера и значением t-статистики Стьюдента определяется так

Как и в случае с оценкой значимости уравнения модели в целом, модель считается ненадежной если tтабл > tфакт

Порядок расчета критерия φ*

1. Формулируем статистические гипотезы:

Но: доля студентов, получивших оценки 4 и 5 до эксперимента такая же, как и после эксперимента;

Н1: доля студентов, получивших оценки 4 и 5 после эксперимента больше, чем до эксперимента.

2. Определяем значения углов φ1 и φ2, соответствующие долям p1 = 0,666; p2 = 0,888

φ1= 2arcsin (√p1)= 2 arcsin √0,6662 arcsin (0,816)= 2·0.954=1.908

φ2= 2arcsin (√p2)= 2 arcsin √0,888=2 arcsin (0,942)= 2·1.228=2.457

3. Вычисляем эмпирическое значение φ по формуле.

4. Сравниваем эмпирическое значение критерия с критическим (представлено в таблице 2)

Таблица 2. Критические значения критерия при различных значениях уровнях значимости α (Попов Г.И. с соавт., 2007).

α критические значения критерия φ*
0,001 2,91
0,01 2,31
0,05 1,64
0,1 1,29

Расчет в программе Excel

В программу введен контрольный пример. В верхней части программы показано, как должны быть представлены исходные данные в случае связанных выборок (слева) и в случае независимых выборок (справа).

Чтобы выполнить расчет, нужно заполнить клетки, выделенные желтым цветом в нижней части таблицы. После этого будет получено эмпирическое значение критерия (фи*эмп). Затем подученное значение эмпирического значения фи нужно сравнить с критическим значением (фи* крит) на заданном уровне значимости. Эти значения приведены в табл.1. Если фи*эмп больше чем фи*крит, различия между группами статистически достоверны.

Показатели качества уравнения регрессии

Показатель Значение
Коэффициент детерминации 0.49
Средний коэффициент эластичности 0.51
Средняя ошибка аппроксимации 10.89

Пример. По совокупности 25 предприятий торговли изучается зависимость между признаками: X — цена на товар А, тыс. руб.; Y — прибыль торгового предприятия, млн. руб. При оценке регрессионной модели были получены следующие промежуточные результаты: ∑(yi-yx)2 = 46000; ∑(yi-yср)2 = 138000. Какой показатель корреляции можно определить по этим данным? Рассчитайте величину этого показателя, на основе этого результата и с помощью F-критерия Фишера сделайте вывод о качестве модели регрессии.
Решение. По этим данным можно определить эмпирическое корреляционное отношение: , где ∑(yср-yx)2 = ∑(yi-yср)2 – ∑(yi-yx)2 = 138000 – 46000 = 92 000.
η2 = 92 000/138000 = 0.67, η = 0.816 (0.7 < η < 0.9 – связь между X и Y высокая).

F-критерий Фишера: n = 25, m = 1.
R2 = 1 – 46000/138000 = 0.67, F = 0.67/(1-0.67)x(25 – 1 – 1) = 46. FтаблПоскольку фактическое значение F > Fтабл, то найденная оценка уравнения регрессии статистически надежна.

Для чего используется точный критерий Фишера?

Точный критерий Фишера в основном применяется для сравнения малых выборок. Этому есть две весомые причины. Во-первых, вычисления критерия довольно громоздки и могут занимать много времени или требовать мощных вычислительных ресурсов. Во-вторых, критерий довольно точен (что нашло отражение даже в его названии), что позволяет его использовать в исследованиях с небольшим числом наблюдений.

Особое место отводится точному критерию Фишера в медицине. Это важный метод обработки медицинских данных, нашедший свое применение во многих научных исследованиях. Благодаря ему можно исследовать взаимосвязь определенных фактора и исхода, сравнивать частоту патологических состояний между разными группами пациентов и т.д.

В каких случаях можно использовать точный критерий Фишера?

  1. Сравниваемые переменные должны быть измерены в номинальной шкале и иметь только два значения, например, артериальное давление в норме или повышено, исход благоприятный или неблагоприятный, послеоперационные осложнения есть или нет.
  2. Критерий подходит для сравнения очень малых выборок: точный критерий Фишера может применяться для анализа четырехпольных таблиц в случае значений ожидаемого явления менее 10, что является ограничением для применения критерия хи-квадрат Пирсона.
  3. Точный критерий Фишера бывает односторонним и двусторонним. При одностороннем варианте точно известно, куда отклонится один из показателей. Например, во время исследования сравнивают, сколько пациентов выздоровело по сравнению с группой контроля. Предполагают, что терапия не может ухудшить состояние пациентов, а только либо вылечить, либо нет.
    Двусторонний тест является предпочтительным, так как оценивает различия частот по двум направлениям. То есть оценивается верятность как большей, так и меньшей частоты явления в экспериментальной группе по сравнению с контрольной группой.

Аналогом точного критерия Фишера является Критерий хи-квадрат Пирсона, при этом точный критерий Фишера обладает более высокой мощностью, особенно при сравнении малых выборок, в связи с чем в этом случае обладает преимуществом.

Критические точки распределения Фишера

(k1— число степеней свободы большей дисперсии,
k2—число степеней свободы меньшей дисперсии)
Уровень значимости a =0.01

k1k2 1 2 3 4 5 6 7 8 9 10 11 12
1 4052 4999 5403 5625 5764 5889 5928 5981 6022 6056 6082 6106
2 98.49 99.01 90.17 99.25 99.33 99.30 99.34 99.36 99.36 99.40 99.41 99.42
3 34.12 30.81 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37
5 16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.27 10.15 10.05 9.96 9.89
6 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72
7 12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62 6.54 6.47
8 11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82 5.74 5.67
9 10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11
10 10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71
11 9.86 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40
12 9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16
13 9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96
14 8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45

Уровень значимости a=0.05

k1k2 1 2 3 4 5 6 7 8 9 10 11 12
1 161 200 216 225 230 234 237 239 241 242 243 244
2 18.5 19.00 19.16 19.25 19:30 19.33 19.36 19.37 19.38 19.39 19.40 19.41
3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79
12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69
13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60
14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53
15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42
17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38
Источники


  • https://www.psychol-ok.ru/statistics/fisher/
  • https://excel2.ru/articles/raspredelenie-fishera-f-raspredelenie-raspredeleniya-matematicheskoy-statistiki-v-ms-excel
  • https://exceltable.com/funkcii-excel/primery-funkcii-fisher
  • https://univer-nn.ru/ekonometrika/kriterij-fishera-i-styudenta/
  • https://allasamsonova.ru/programma-rascheta-uglovogo-preobrazovanija-fishera-fi/
  • https://math.semestr.ru/corel/fisher.php
  • https://medstatistic.ru/methods/methods5.html
  • https://math.semestr.ru/corel/table-fisher.php

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения