Производная косинуса – cos x – доказательство

Понятие производной

Итак, рассмотрим некую произвольную кривую, которая описывается абстрактной функцией y = f(x).

Представим что график — это карта туристического маршрута. Приращение ∆x (дельта икс) на рисунке — это определенный промежуток пути, а ∆y – это изменение высоты тропы над уровнем моря.
Тогда получается, что отношение ∆x/∆y будет характеризовать сложно маршрута на каждом отрезке пути. Узнав это значение можно с уверенностью сказать крутой ли подъем/спуск, понадобится ли альпинистское снаряжение и нужна ли туристам определенная физическая подготовка. Но показатель этот будет справедлив только для одного маленького промежутка ∆x.

Если организатор похода возьмет значения для начальной и конечной точек тропы, то есть ∆x – будет равен длине маршрута, то не сможет получить объективные данные о степени сложности путешествия. Следовательно, необходимо построить еще один график, который будет характеризовать скорость и «качество» изменений пути, другими словами определять отношение ∆x/∆y для каждого «метра» маршрута.

Этот график и будет являться наглядной производной для конкретной тропы и объективно опишет ее изменения на каждом интересующем интервале. Убедиться в этом очень просто, значение ∆x/∆y – есть не что иное, как дифференциал, взятый для конкретного значения x и y. Применим же дифференцирование не определенным координатам, а к функции в целом:

Примеры решения задач по теме «Производная косинуса»

ПРИМЕР 1
Задание Найти производную функции
Решение Искомая производная

Выносим константу за знак производной:

Производная от косинуса равна минус синусу такого же аргумента, и так как аргумент есть более сложное выражение, чем просто , то умножаем еще все на производную от аргумента. То есть имеем:

Производная разности равна разности производных:

С первой производной по правилу дифференцирования выносим тройку за знак производной, а производная от 7 равна нулю как производная константы:

Производная независимой переменной равна единице, поэтому окончательно имеем, что

Ответ
ПРИМЕР 2
Задание Найти производную функции
Решение Искомая производная

Производная натурального логарифма равна единице деленной на подлогарифмическую функцию: . Так как подлогарифмическая функция представляет собой выражение более сложное, ем просто . Так как подлогарифмическая функция представляет собой выражение более сложное, ем просто , то домнажаем еще и на ее производную, то есть:

Производная косинуса равна минус синусу:

По тригонометрическим формулам отношение синуса к косинусу равно тангенсу:

Ответ

Прямые и производные функции: синус (sin), косинус (cos), тангенс (tg) и котангенс (ctg).

Действие Формула
Производная синуса sin’ x = cos x
Производная косинуса cos’ x = -sin x
Производная тангенса tg’ x = 1 / cos2 (x)
Производная котангенса ctg’ x = 1 / sin2 (x)
 

Правила нахождения производных

Пример 1. Найти производную функции y=cos4x.
Решение.
Внешней функцией здесь служит степенная функция: cos(x) возводится в четвертую степень. Дифференцируя эту степенную функцию по промежуточному аргументу cos(x), получим
(cos4x)′cos x = 4cos4-1x = 4cos3x
но промежуточный аргумент cos(x) – функция независимой переменной хcos(x) по независимой переменной х . Таким образом, получим
y′x = (cos4x)′cos x·(cosx)′x = 4·cos3x·(-sin x) = -4·cos3x·sin x
При дифференцировании функций нет необходимости в таких подробных записях. Результат следует писать сразу, представляя последовательно в уме промежуточные аргументы.

Пример 2. Найти производную функции
.

.
В некоторых случаях, если, например, нужно найти производную функции y = (u(x))v(x), или функции, заданной в виде произведения большого числа сомножителей, используется так называемый способ логарифмического дифференцирования.

Пример 3. Найти производную функции
.
Решение.
Применим метод логарифмического дифференцирования. Рассмотрим функцию

Учитывая, что , будем иметь

Но , откуда
, откуда
.

Пример 4. Найти производную функции y=xex
Решение.
.

Общие формулы дифференцирования функций

В этих формулах u и v — произвольные дифференцируемые функции вещественной переменной, а c — вещественная константа. Этих формул достаточно для дифференцирования любой элементарной функции.
(c · u)′ = c · u
(u + v)′ = u ′ + v
(u · v)′ = u ′ · v + u · v
( u ) = u ′ · vu · v
v v2

Производная от константы

c ′ = 0, где c = const

Производная степенной функции

(xn )′ = n · xn – 1

Производная показательной функции

(ax )′ = ax · ln a

Таблица производных

Производная степенной функции:

Производная показательной функции:

Производная экспонециальной функции:

Производная логарифмической функции:

Производные тригонометрических функций:
,
,
,

Производные обратных тригонометрических функций:
,
,
,

Производные гиперболических функций:



Таблица производных сложных функций

В следующей таблице приведены формулы для производных сложных функций.

В отдельных строках (с желтым фоном) приведены формулы для производных сложных функций в случае, когда внутренняя функция является линейной функцией и имеет вид f (x) = kx + b , где k и b – любые числа, .

Функция Формула для производной

y = (kx + b) c ,

где c – любое число.

y’ = kc (kx + b) c – 1 ,

y = ( f (x)) c ,

где c – любое число.

y = ekx + b y = kekx + b
y = e f (x)

y = akx + b

где a – любое положительное число, не равное 1

y = a f (x)

где a – любое положительное число, не равное 1

y = ln (kx + b) , kx + b > 0 ,

kx + b > 0

y = ln ( f (x)) , f (x) > 0 ,

f (x) > 0

y = log a (kx + b) , kx + b > 0

где a – любое положительное число, не равное 1

, kx + b > 0

y = log a ( f (x)) , f (x) > 0

где a – любое положительное число, не равное 1

, f (x) > 0
y = sin (kx + b) y’ = k cos (kx + b)
y = sin ( f (x))
y = cos (kx + b) y’ = – k sin (kx + b)
y = cos ( f (x))

y = tg (kx + b),

где

, ,

y = tg ( f (x)),

где

, ,

y = ctg (kx + b),

где

,
,

y = ctg ( f (x)),

где

,
,
y = arcsin (kx + b),
y = arcsin ( f (x)),
y = arccos (kx + b),
y = arccos ( f (x)),
y = arctg (kx + b)
y = arctg ( f (x))
y = arcctg (kx + b)
y = arcctg ( f (x))

Функция:

y = (kx + b) c ,

где c – любое число.

Формула для производной:

y’ = kc (kx + b) c – 1 ,

Функция:

y = ( f (x)) c ,

где c – любое число.

Формула для производной:

Функция:

y = ekx + b

Формула для производной:

y = kekx + b

Функция:

y = e f (x)

Формула для производной:

Функция:

y = akx + b

где a – любое положительное число, не равное 1

Формула для производной:

Функция:

y = a f (x)

где a – любое положительное число, не равное 1

Формула для производной:

Функция:

y = ln (kx + b) , kx + b > 0

Формула для производной:

, kx + b > 0

Функция:

y = ln ( f (x)) , f (x) > 0

Формула для производной:

, f (x) > 0

Функция:

y = log a (kx + b) , kx + b > 0

где a – любое положительное число, не равное 1

Формула для производной:

, kx + b > 0

Функция:

y = log a ( f (x)) , f (x) > 0

где a – любое положительное число, не равное 1

Формула для производной:

, f (x) > 0

Функция:

y = sin (kx + b)

Формула для производной:

y’ = k cos (kx + b)

Функция:

y = sin ( f (x))

Формула для производной:

Функция:

y = cos (kx + b)

Формула для производной:

y’ = – k sin (kx + b)

Функция:

y = cos ( f (x))

Формула для производной:

Функция:

y = tg (kx + b),

где

Формула для производной:

, ,

Функция:

y = tg ( f (x)),

где

Формула для производной:

, ,

Функция:

y = ctg (kx + b),

где

Формула для производной:

, ,

Функция:

y = ctg ( f (x)),

где

Формула для производной:

, ,

Функция:

y = arcsin (kx + b),

Формула для производной:

Функция:

y = arcsin ( f (x)),

Формула для производной:

Функция:

y = arccos (kx + b),

Формула для производной:

Функция:

y = arccos ( f (x)),

Формула для производной:

 

Функция:

y = arctg (kx + b)

Формула для производной:

Функция:

y = arctg ( f (x))

Формула для производной:

Функция:

y = arcctg (kx + b)

Формула для производной:

Функция:

y = arcctg ( f (x))

Формула для производной:

Производная и тригонометрические функции

Тригонометрические функции неразрывно связаны с производной. Понять это можно из следующего чертежа. На рисунке координатной оси изображена функция Y = f (x) – синяя кривая.

K (x0; f (x0)) – произвольная точка, x0 + ∆x – приращение по оси OX, а f (x0 + ∆x) – приращение по оси OY в некой точке L.

Проведем прямую через точки K и L и построим прямоугольный треугольник KLN. Если мысленно перемещать отрезок LN по графику Y = f (x), то точки L и N будут стремиться к значениям K (x0; f (x0)). Назовем эту точку условным началом графика — лимитом, если же функция бесконечна, хотя бы на одном из промежутков – это стремление также будет бесконечным, а его предельное значение близким к 0.

Характер данного стремления можно описать касательной к выбранной точке y = kx + b или графиком производной первоначальной функции dy – зеленая прямая.

Но где же здесь тригонометрия?! Все очень просто рассмотрим прямоугольный треугольник KLN. Значение дифференциала для конкретной точки K есть тангенс угла α или ∠K:

Таким образом можно описать геометрический смымсл производной и ее взаимосвязь с тригонометрическими функциями.

Синтаксис описания формул

В описании функции допускается использование одной переменной (обозначается как x), скобок, числа пи (pi), экспоненты (e), математических операций: + — сложение, — вычитание, * — умножение, / — деление, ^ — возведение в степень.
Допускаются также следующие функции: sqrt — квадратный корень, exp — e в указанной степени, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — натуральный логарифм (по основанию e), sin — синус, cos — косинус, tg — тангенс, ctg — котангенс, sec — секанс, cosec — косеканс, arcsin — арксинус, arccos — арккосинус, arctg — арктангенс, arcctg — арккотангенс, arcsec — арксеканс, arccosec — арккосеканс, versin — версинус, vercos — коверсинус, haversin — гаверсинус, exsec— экссеканс, excsc — экскосеканс, sh — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, abs — абсолютное значение (модуль), sgn — сигнум (знак), logP — логарифм по основанию P, например log7(x) — логарифм по основанию 7, rootP — корень степени P, например root3(x) — кубический корень.

Таблица производных часто встречающихся функций

В следующей таблице приведены формулы для производных от степенных, показательных (экспоненциальных), логарифмических, тригонометрических и обратных тригонометрических функций. Доказательство большинства их этих формул выходит за рамки школьного курса математики.

Функция Формула для производной Название формулы

y = c ,

где c – любое число

y’ = 0 Производная от постоянной функции

y = x c ,

где c – любое число

y’ = c xc – 1 Производная степенной функции
y = e x y’ = e x Производная от экспоненты (показательной функции с основанием e)

y = a x

где a – любое положительное число, не равное 1

y’ = a x ln a Производная от показательной функции с основанием a
y = ln x , x > 0 , x > 0 Производная от натурального логарифма

y = log a x , x > 0

где a – любое положительное число, не равное 1

, x > 0 Производная от логарифма по основанию a
y = sin x y’ = cos x Производная синуса
y = cos x y’ = – sin x Производная косинуса

y = tg x ,

, , Производная тангенса

y = ctg x ,

, , Производная котангенса

y = arcsin x ,

Производная арксинуса

y = arccos x ,

Производная арккосинуса
y = arctg x Производная арктангенса
y = arcctg x Производная арккотангенса
Производная от постоянной функции

Функция:

y = c ,

где c – любое число

Формула для производной:

y’ = 0

Производная степенной функции

Функция:

y = x c ,

где c – любое число

Формула для производной:

y’ = c xc – 1

Производная от экспоненты (показательной функции с основанием e)

Функция:

y = e x

Формула для производной:

y’ = e x

Производная от показательной функции с основанием a

Функция:

y = a x

где a – любое положительное число, не равное 1

Формула для производной:

y’ = a x ln a

Производная от натурального логарифма

Функция:

y = ln x , x > 0

Формула для производной:

, x > 0

Производная от логарифма по основанию a

Функция:

y = log a x , x > 0

где a – любое положительное число, не равное 1

Формула для производной:

, x > 0

Производная синуса

Функция:

y = sin x

Формула для производной:

y’ = cos x

Производная косинуса

Функция:

y = cos x

Формула для производной:

y’ = – sin x

Производная тангенса

Функция:

y = tg x ,

где

Формула для производной:

,

Производная котангенса

Функция:

y = ctg x ,

где

Формула для производной:

,
Производная арксинуса

Функция:

y = arcsin x ,

Формула для производной:

Производная арккосинуса

Функция:

y = arccos x ,

Формула для производной:

Производная арктангенса

Функция:

y = arctg x

Формула для производной:

Производная арккотангенса

Функция:

y = arcctg x

Формула для производной:

Примеры

Рассмотрим простые примеры нахождения производных от функций, содержащих синус. Мы найдем производные от следующих функций:
y = sin 2x; y = sin 2 x и y = sin 3 x.

Прикладное использование производной

Вычисление производной первого и второго порядка используется во многих прикладных задачах. Рассмотрим наиболее распространенные из них.

  1. Нахождение экстремумов функции одной переменной осуществляют приравниванием к нулю производной: f'(x)=0. Этот этап является основным для построения графика функции методом дифференциального исчисления.
  2. Значение производной в точке x0 позволяет находить уравнение касательной к графику функции.
  3. Отношение производных позволяет вычислять пределы по правилу Лопиталя.
  4. В математической статистике плотность распределения f(x) определяют как производную от функции распределения F(x).
  5. При отыскании частного решения линейного дифференциального уравнения требуется вычислять производную в точке.
  6. В методе Ньютона с помощью производной отделяют корни нелинейных уравнений.

Вычисление производной

Вычисление производной — дело нехитрое, достаточно знать несколько простых правил и формулы дифференцирования простых функций; сложнее в этом онлайн калькуляторе было сделать интерпретатор математических выражений и алгоритм упрощения полученного результата, но об этом как-нибудь в другой раз…

Формулы дифференцирования. Правила дифференцирования.

Дифференцирование – это определение производной. Формулы дифференцирования. Правила дифференцирования.
Источники


  • https://karate-ege.ru/matematika/proizvodnye-trigonometricheskih-funktsij-tangensa-sinusa-kosinusa-i-drugih.html
  • http://ru.solverbook.com/spravochnik/proizvodnye/proizvodnaya-kosinusa/
  • https://MicroExcel.ru/proizvodnye-trigonometricheskikh-funktsiy/
  • https://math.semestr.ru/math/diff.php
  • https://ru.onlinemschool.com/math/formula/derivative_table/
  • https://planetcalc.ru/675/
  • https://www.resolventa.ru/spr/matan/derivative_rule.htm
  • https://1cov-edu.ru/mat_analiz/proizvodnaya/funktsii/trigonometricheskie/sin-x/
  • https://www.calc.ru/Formuly-Proizvodnykh.html

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: