Таблицы синусов, косинусов, тангенсов и котангенсов

Решение уравнения sin x = a

Обычная форма
записи решения
Более удобная форма
записи решения
Ограничения
на число a
В случае, когда ,
уравнение решений не имеет

Обычная форма записи решения:

Более удобная форма записи решения:

Ограничения на число a:

В случае, когда , уравнение решений не имеет.

Графическое обоснование решения уравнения sin x = a представлено на рисунке 1

Рис. 1

Частные случаи решения уравнений sin x = a

Уравнение Решение
sin x = – 1
sin x = 0
sin x = 1

Уравнение:

sin x = – 1

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

>

Уравнение:

sin x = 0

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

sin x = 1

Решение:

Геометрическое определение синуса и косинуса

( sin alpha = dfrac{|BC|}{|AB|} ), ( cos alpha = dfrac{|AC|}{|AB|} )

α – угол, выраженный в радианах.

Синус (sin α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AB|.
Косинус (cos α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AC| к длине гипотенузы |AB|.

Таблица синусов и её применение

Для начала нужно напомнить, что означает такое понятие, как синус угла.

Синус – это отношение противолежащего этому углу катета к гипотенузе.

Это справедливо в случае, если треугольник прямоугольный.

Стандартный прямоугольный треугольник: стороны a (BC) и b (AC) – катеты, сторона с (AB) – гипотенуза

Пример: найдем синус угла ⍺ и угла β

sin ⍺ = а/с или отношение стороны ВС к стороне АВ. Если брать угол β, то противостоящим будет считаться сторона b или АС. Гипотенуза в данном случае та же – AB. Тогда:

sin β = b/с или АС отношение АВ.

В прямоугольном треугольнике всегда 2 катета и только одна гипотенуза

Как известно, целых значений угла – 360. Но часто нужно рассчитать значения для самых популярных углов, таких как: синус 0°, синус 30°, синус 45°, синус 60°, синус 90°. Эти значения можно найти в таблицах Брадиса.

Несмотря на то, что в 2021 году она отмечает свой столетний юбилей, свою актуальность таблица Брадиса не утратила. В частности ее применяют архитекторы, проектанты, конструктора для проведения быстрых промежуточных расчетов. Таблицы Брадиса разрешены к использованию в школах при сдаче ЕГЭ, в отличие от калькуляторов.

Решение уравнения cos x = a

Обычная форма
записи решения
Более удобная форма
записи решения
Ограничения
на число a
В случае, когда ,
уравнение решений не имеет

Обычная форма записи решения:

Более удобная форма записи решения:

Ограничения на число a

В случае, когда , уравнение решений не имеет.

Графическое обоснование решения уравнения cos x = a представлено на рисунке 2

Рис. 2

Частные случаи решения уравнений cos x = a

Уравнение Решение
cos x = – 1
cos x = 0
cos x = 1

Уравнение:

cos x = – 1

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

cos x = 0

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

cos x = 1

Решение:

Определение синуса, косинуса, тангенса и котангенса

Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. А позже изучается тригонометрия, где говорится о синусе, косинусе, тангенсе и котангенсе угла поворота и числа. Приведем все эти определения, приведем примеры и дадим необходимые комментарии.

Острого угла в прямоугольном треугольнике

Из курса геометрии известны определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. Они даются как отношение сторон прямоугольного треугольника. Приведем их формулировки.

Определение.

Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.

Определение.

Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.

Определение.

Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.

Определение.

Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.

Там же вводятся обозначения синуса, косинуса, тангенса и котангенса – sin, cos, tg и ctg соответственно.

Например, если АВС – прямоугольный треугольник с прямым углом С, то синус острого угла A равен отношению противолежащего катета BC к гипотенузе AB, то есть, sin∠A=BC/AB.

Эти определения позволяют вычислять значения синуса, косинуса, тангенса и котангенса острого угла по известным длинам сторон прямоугольного треугольника, а также по известным значениям синуса, косинуса, тангенса, котангенса и длине одной из сторон находить длины других сторон. Например, если бы мы знали, что в прямоугольном треугольнике катет AC равен 3, а гипотенуза AB равна 7, то мы могли бы вычислить значение косинуса острого угла A по определению: cos∠A=AC/AB=3/7.

Угла поворота

В тригонометрии на угол начинают смотреть более широко – вводят понятие угла поворота. Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от −∞ до +∞.

В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины – угла поворота. Они даются через координаты x и y точки A1, в которую переходит так называемая начальная точка A(1, 0) после ее поворота на угол α вокруг точки O – начала прямоугольной декартовой системы координат и центра единичной окружности.

Определение.

Синус угла поворота α – это ордината точки A1, то есть, sinα=y.

Определение.

Косинусом угла поворота α называют абсциссу точки A1, то есть, cosα=x.

Определение.

Тангенс угла поворота α – это отношение ординаты точки A1 к ее абсциссе, то есть, tgα=y/x.

Определение.

Котангенсом угла поворота α называют отношение абсциссы точки A1 к ее ординате, то есть, ctgα=x/y.

Синус и косинус определены для любого угла α, так как мы всегда можем определить абсциссу и ординату точки, которая получается в результате поворота начальной точки на угол α. А тангенс и котангенс определены не для любого угла. Тангенс не определен для таких углов α, при которых начальная точка переходит в точку с нулевой абсциссой (0, 1) или (0, −1), а это имеет место при углах 90°+180°·k, k∈Z (π/2+π·k рад). Действительно, при таких углах поворота выражение tgα=y/x не имеет смысла, так как в нем присутствует деление на нуль. Что же касается котангенса, то он не определен для таких углов α, при которых начальная точка переходит к в точку с нулевой ординатой (1, 0) или (−1, 0), а это имеет место для углов 180°·k, k∈Z (π·k рад).

Итак, синус и косинус определены для любых углов поворота, тангенс определен для всех углов, кроме 90°+180°·k, k∈Z (π/2+π·k рад), а котангенс – для всех углов, кроме 180°·k, k∈Z (π·k рад).

В определениях фигурируют уже известные нам обозначения sin, cos, tg и ctg, они используются и для обозначения синуса, косинуса, тангенса и котангенса угла поворота (иногда можно встретить обозначения tan и cot, отвечающие тангенсу и котангенсу). Так синус угла поворота 30 градусов можно записать как sin30°, записям tg(−24°17′) и ctgα отвечают тангенс угла поворота −24 градуса 17 минут и котангенс угла поворота α. Напомним, что при записи радианной меры угла обозначение «рад» часто опускают. Например, косинус угла поворота в три пи рад обычно обозначают cos3·π.

В заключение этого пункта стоит заметить, что в разговоре про синус, косинус, тангенс и котангенс угла поворота часто опускают словосочетание «угол поворота» или слово «поворота». То есть, вместо фразы «синус угла поворота альфа» обычно используют фразу «синус угла альфа» или еще короче – «синус альфа». Это же касается и косинуса, и тангенса, и котангенса.

Также скажем, что определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике согласуются с только что данными определениями синуса, косинуса, тангенса и котангенса угла поворота величиной от 0 до 90 градусов. Это мы обоснуем в последнем пункте этой статьи.

Числа

Дальше возникает потребность отвязаться от углов и дать определения синуса, косинуса, тангенса и котангенса числа, а не угла.

Определение.

Синусом, косинусом, тангенсом и котангенсом числа t называют число, равное синусу, косинусу, тангенсу и котангенсу угла поворота в t радианов соответственно.

Например, косинус числа 8·π по определению есть число, равное косинусу угла в 8·π рад. А косинус угла в 8·π рад равен единице, поэтому, косинус числа 8·π равен 1.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Он состоит в том, что каждому действительному числу t ставится в соответствие точка единичной окружности с центром в начале прямоугольной системы координат, и синус, косинус, тангенс и котангенс определяются через координаты этой точки. Остановимся на этом подробнее.

Покажем, как устанавливается соответствие между действительными числами и точками окружности:

  • числу 0 ставится в соответствие начальная точка A(1, 0)
  • положительному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении против часовой стрелки и пройдем путь длиной t
  • отрицательному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении по часовой стрелке и пройдем путь длиной |t|.

Теперь переходим к определениями синуса, косинуса, тангенса и котангенса числа t. Допустим, что числу t соответствует точка окружности A1(x, y) (например, числу &pi/2; отвечает точка A1(0, 1)).

Определение.

Синусом числа t называют ординату точки единичной окружности, соответствующей числу t, то есть, sint=y.

Определение.

Косинусом числа t называют абсциссу точки единичной окружности, отвечающей числу t, то есть, cost=x.

Определение.

Тангенсом числа t называют отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t, то есть, tgt=y/x. В другой равносильной формулировке тангенс числа t – это отношение синуса этого числа к косинусу, то есть, tgt=sint/cost.

Определение.

Котангенсом числа t называют отношение абсциссы к ординате точки единичной окружности, соответствующей числу t, то есть, ctgt=x/y. Другая формулировка такова: тангенс числа t – это отношение косинуса числа t к синусу числа t: ctgt=cost/sint.

Здесь отметим, что только что данные определения согласуются с определением, данным в начале этого пункта. Действительно, точка единичной окружности, соответствующая числу t, совпадает с точкой, полученной в результате поворота начальной точки на угол в t радианов.

Еще стоит прояснить такой момент. Допустим, перед нами запись sin3. Как понять, о синусе числа 3 или о синусе угла поворота в 3 радиана идет речь? Обычно это ясно из контекста, в противном случае это скорее всего не имеет принципиального значения.

sin x =1

Эта ассоциация помогает легко запомнить значения x, в которых синус равен 1, и быстро решить уравнение sin x =1.

Частные случаи синуса, как и частные случаи косинуса, удобнее всего искать на единичной окружности.

Итак, косинус — колобок. Оба начинаются с ко-, и буква o в имени cos x такая же круглая, как колобок.

Как движется колобок? Влево-вправо, с его круглой фигурой вверх-вниз особо не попрыгаешь. На координатной плоскости влево-вправо движется x. Значит, косинус — это x, а синус — это y.

Поэтому, чтобы определить, где sin x =1, нам надо найти, где на единичной окружности y=1. Двигаемся вверх по оси y и попадаем в точку п/2.

Это только одна из точек, в которых синус равен единице.

Через полный оборот окружности мы снова попадем в эту точку, через два, три и т.д. оборотов — тоже.

Если пойдем по часовой стрелке, то есть -2п, -2п·2, -2п·3 и т.д., то тоже попадем в эту точку.

Чтобы учесть все точки, в которых sin x =1, прибавляем к п/2 2пn, где n — целое число (n принадлежит Z). То есть n=0,±1,±2,±3,…

Метафора для синуса и косинуса: купол

Вместо того, чтобы просто смотреть на сами треугольники, представьте их в действии, найдя какой-то частный пример из жизни.

Представьте, будто вы находитесь посередине купола и хотите подвесить экран для кинопроектора. Вы указываете пальцем на купол под неким углом “x”, и к этой точке должен быть подвешен экран.

Угол, на который вы указываете, определяет:

  • синус(x) = sin(x) = высота экрана (от пола до точки крепления на куполе)
  • косинус(x) = cos(x) = расстояние от вас до экрана (по полу)
  • гипотенуза, расстояние от вас к верхушке экрана, всегда одинаковое, равно радиусу купола

Хотите, чтобы экран был максимально большой? Повесьте его прямо над собой.

Хотите, чтобы экран висел на максимально большом расстоянии от вас? Вешайте его прямо перпендикулярно. У экрана будет нулевая высота в этом положении, и он будет висеть наиболее отдаленно, как вы и просили.

Высота и расстояние от экрана обратно пропорциональны: чем ближе висит экран, тем его высота будет больше.

Обратная к синусу функция

Арксинус x – это обратная функция к синусу x, при -1≤x≤1.

Если синус угла у равняется х (sin y = x), значит арксинус x равен у:

arcsin x = sin-1 x = y

Тригонометрическое определение

С помощью формул, указанных выше, можно найти синус и косинус острого угла. Но нужно научиться вычислять синус и косинус угла произвольной величины. Прямоугольный треугольник не даёт такой возможности (тупого угла, например, в нём быть не может); следовательно, нужно более общее определение синуса и косинуса, содержащее указанные формулы как частный случай.

На помощь приходит тригонометрическая окружность. Пусть дан некоторый угол; ему отвечает одноимённая точка на тригонометрической окружности.

Рис. 2. Тригонометрическое определение синуса и косинуса

Косинус угла – это абсцисса точки. Синус угла – это ордината точки.

На рис. 2 угол взят острым, и легко понять, что данное определение совпадает с общим геометрическим определением. В самом деле, мы видим прямоугольный треугольник с единичной гипотенузой O и острым углом. Прилежащий катет этого треугольника есть cos (сравните с рис. 1) и одновременно абсцисса точки ; противолежащий катет есть sin (как на рис. 1) и одновременно ордината точки.

Но теперь мы уже не стеснены первой четвертью и получаем возможность распространить данное определение на любой угол . На рис. 3 показано, что такое синус и косинус угла во второй, третьей и четвёртой четвертях.

Рис. 3. Синус и косинус во II, III и IV четвертях

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Тригонометрические определения синуса, косинуса, тангенса и котангенса позволяют указать значения тригонометрических функций для углов 0 и 90 градусов:
, а котангенс нуля градусов не определен, и
, а тангенс 90 градусов не определен.

В курсе геометрии из прямоугольных треугольников с углами 30, 60 и 90 градусов, а также 45, 45 и 90 градусов находятся значения синуса, косинуса, тангенса и котангенса углов 30, 45 и 60 градусов:
,
и
.

Занесем указанные значения тригонометрических функций для углов 0, 30, 45, 60 и 90 градусов (0, π/6, π/4, π/3, π/2 радиан) в таблицу, назовем ее таблицей основных значений синуса, косинуса, тангенса и котангенса.

Используя формулы приведения, только что составленную таблицу синусов, косинусов, тангенсов и котангенсов можно расширить, дополнив значениями тригонометрических функций для углов 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, 330 и 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). При этом она принимает следующий вид.

Опираясь на свойство периодичности синуса, косинуса, тангенса и котангенса, таблицу основных значений тригонометрических функций можно расширить еще, заменив углы 0, 30, 45, 60, 90, …, 360 градусов соответственно на , где z – любое целое число. Из такой таблицы можно найти значения для всех углов, которым соответствуют точки единичной окружности, указанные на чертеже ниже.

Основные значения тригонометрических функций, собранные в заполненной выше таблице, желательно знать наизусть, так как они очень часто используются при решении задач.

Как пользоваться таблицей Брадиса?

В таблице Брадиса представлены значения углов кратных 6 минутам. Если необходимо найти значения синуса, косинуса, тангенса или котангенса угла, который отсутствует в таблице Брадиса, следует выбирать наиболее близкое к нему значение. И добавить (отнять) к нему поправку соответствующую разнице, которая может быть равна 1′, 2′, 3′.
Примеры:

  1. sin(15°25′) = sin(15°24′) + поправка 1′ = 0.2656 + 0.0003 = 0.2659
  2. sin(15°28′) = sin(15°30′) – поправка 2′ = 0.2672 – 0.0006 = 0.2666

При вычислении значений синуса поправка имеет положительный знак, для косинуса поправку необходимо брать с отрицательным знаком:

  1. cos(15°25′) = sin(15°24′) + поправка 1′ = 0.9641 – 0.0001 = 0.9640
  2. cos(15°28′) = sin(15°30′) – поправка 2′ = 0.9636 + 0.0002 = 0.9638

Формулы общего вида


Определения
Синус угла α (обозн. sin(α)) — отношение противолежащего от угла α катета к гипотенузе.
Косинус угла α (обозн. cos(α)) — отношение прилежащего к углу α катета к гипотенузе.
Тангенс угла α (обозн. tg(α)) — отношение противолежащего к углу α катета к прилежащему. Эквивалентное определение — отношение синуса угла α к косинусу того же угла — sin(α)/cos(α).
Котангенс угла α (обозн. ctg(α)) — отношение прилежащего к углу α катета к противолежащему. Эквивалентное определение — отношение косинуса угла α к синусу того же угла — cos(α)/sin(α).
Другие тригонометрические функции: секанс — sec(α) = 1/cos(α); косеканс — cosec(α) = 1/sin(α).
Примечание
Мы специально не пишем знак * (умножить), — там, где две функции записаны подряд, без пробела, он подразумевается.
Подсказка
Для вывода формул косинуса, синуса, тангенса или котангенса кратных (4+) углов, достаточно расписать их по формулам соотв. косинуса, синуса, тангенса или котангенса суммы, либо сводить к предыдущим случаям, сводя до формул тройных и двойных углов.

Свойства синуса

Ниже в табличном виде представлены основные свойства синуса с формулами:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все об Экселе: формулы, полезные советы и решения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Свойство Формула
Симметричность sin (90°- α) = cos α‘ data-original-value=’sin (90°- α) = cos α‘ data-cell-type=”text” data-db-index=”3″ data-y=”3″ data-x=”1″ data-cell-id=”B3″>sin (90°- α) = cos α
Пифагорейская тригонометрическая идентичность sin α = cos α tg α‘ data-original-value=’sin α = cos α tg α‘ data-cell-type=”text” data-db-index=”5″ data-y=”5″ data-x=”1″ data-cell-id=”B5″>sin α = cos α tg α
sin 2α = 2 sin α cos α‘ data-original-value=’sin 2α = 2 sin α cos α‘ data-cell-type=”text” data-db-index=”7″ data-y=”7″ data-x=”1″ data-cell-id=”B7″>sin 2α = 2 sin α cos α
Синус суммы углов sin (α-β) = sin α cos β – cos α sin β‘ data-original-value=’sin (α-β) = sin α cos β – cos α sin β‘ data-cell-type=”text” data-db-index=”9″ data-y=”9″ data-x=”1″ data-cell-id=”B9″>sin (α-β) = sin α cos β – cos α sin β
Сумма синусов ‘ data-original-value=’‘ data-cell-type=”text” data-db-index=”11″ data-y=”11″ data-x=”1″ data-cell-id=”B11″>
Произведение синусов ‘ data-original-value=’‘ data-cell-type=”text” data-db-index=”13″ data-y=”13″ data-x=”1″ data-cell-id=”B13″>
Закон синуса ∫ sin x dx = -cos x + C‘ data-original-value=’∫ sin x dx = -cos x + C‘ data-cell-type=”text” data-db-index=”16″ data-y=”16″ data-x=”1″ data-cell-id=”B16″>∫ sin x dx = -cos x + C
Формула Эйлера